zoukankan      html  css  js  c++  java
  • 004-1-代价函数与激活函数

     

     

    同样对于上一课的例子,将二次代价函数换成交叉熵函数

    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    #载入数据
    mnist = input_data.read_data_sets("MNIST_data",one_hot = True)
    
    #定义每个批次的大小
    batch_size = 100
    #计算一共有多少个批次
    n_batch = mnist.train.num_examples//batch_size
    
    #定义2个placeholder
    x = tf.placeholder(tf.float32,[None,784])
    y = tf.placeholder(tf.float32,[None,10])
    
    #创建一个简单的神经网络:
    W = tf.Variable(tf.zeros([784,10]))
    b = tf.Variable(tf.zeros([10]))
    prediction = tf.nn.softmax(tf.matmul(x,W)+b)
    
    #二次代价函数:
    # loss = tf.reduce_mean(tf.square(y-prediction))
    #对数似然函数
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels= y,
                                                      logits= prediction)) 
    
    #梯度下降
    train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
    
    #初始化变量
    init = tf.global_variables_initializer()
    
    #求准确率
    #比较预测值最大标签位置与真实值最大标签位置是否相等
    correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))
    #求准去率
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
    
    with tf.Session() as sess:
        sess.run(init)
        for epoch in range(21):
            for batch in range(n_batch):
                batch_xs,batch_ys = mnist.train.next_batch(batch_size)
                sess.run(train_step,feed_dict = {x:batch_xs,y:batch_ys})
            acc = sess.run(accuracy,feed_dict ={x:mnist.test.images,
                                                y:mnist.test.labels})
            print("Iter"+str(epoch+1)+",Testing accuracy"+str(acc))
            
    

      

    Extracting MNIST_data	rain-images-idx3-ubyte.gz
    Extracting MNIST_data	rain-labels-idx1-ubyte.gz
    Extracting MNIST_data	10k-images-idx3-ubyte.gz
    Extracting MNIST_data	10k-labels-idx1-ubyte.gz
    Iter1,Testing accuracy0.8339
    Iter2,Testing accuracy0.895
    Iter3,Testing accuracy0.9011
    Iter4,Testing accuracy0.9053
    Iter5,Testing accuracy0.908
    Iter6,Testing accuracy0.9117
    Iter7,Testing accuracy0.9123
    Iter8,Testing accuracy0.913
    Iter9,Testing accuracy0.9147
    Iter10,Testing accuracy0.9166
    Iter11,Testing accuracy0.9178
    Iter12,Testing accuracy0.9189
    Iter13,Testing accuracy0.9183
    Iter14,Testing accuracy0.9178
    Iter15,Testing accuracy0.9198
    Iter16,Testing accuracy0.92
    Iter17,Testing accuracy0.9206
    Iter18,Testing accuracy0.9206
    Iter19,Testing accuracy0.9208
    Iter20,Testing accuracy0.9209
    Iter21,Testing accuracy0.9212
  • 相关阅读:
    java学习之成员内部类
    上海 炉石面试题及解析
    利用RALL机制来事项String类的赋值操作
    关于信号打断正在读取终端的read与select来监视0文件描述符的问题
    ubuntu16.04开机花屏蓝屏解决方案
    gcc 中__thread 关键字的示例代码
    成长、责任和公司的关系
    团队贡献分
    团队如何做决定
    分析app的NABCD
  • 原文地址:https://www.cnblogs.com/Mjerry/p/9828075.html
Copyright © 2011-2022 走看看