zoukankan      html  css  js  c++  java
  • 004-1-代价函数与激活函数

     

     

    同样对于上一课的例子,将二次代价函数换成交叉熵函数

    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    #载入数据
    mnist = input_data.read_data_sets("MNIST_data",one_hot = True)
    
    #定义每个批次的大小
    batch_size = 100
    #计算一共有多少个批次
    n_batch = mnist.train.num_examples//batch_size
    
    #定义2个placeholder
    x = tf.placeholder(tf.float32,[None,784])
    y = tf.placeholder(tf.float32,[None,10])
    
    #创建一个简单的神经网络:
    W = tf.Variable(tf.zeros([784,10]))
    b = tf.Variable(tf.zeros([10]))
    prediction = tf.nn.softmax(tf.matmul(x,W)+b)
    
    #二次代价函数:
    # loss = tf.reduce_mean(tf.square(y-prediction))
    #对数似然函数
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels= y,
                                                      logits= prediction)) 
    
    #梯度下降
    train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
    
    #初始化变量
    init = tf.global_variables_initializer()
    
    #求准确率
    #比较预测值最大标签位置与真实值最大标签位置是否相等
    correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))
    #求准去率
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
    
    with tf.Session() as sess:
        sess.run(init)
        for epoch in range(21):
            for batch in range(n_batch):
                batch_xs,batch_ys = mnist.train.next_batch(batch_size)
                sess.run(train_step,feed_dict = {x:batch_xs,y:batch_ys})
            acc = sess.run(accuracy,feed_dict ={x:mnist.test.images,
                                                y:mnist.test.labels})
            print("Iter"+str(epoch+1)+",Testing accuracy"+str(acc))
            
    

      

    Extracting MNIST_data	rain-images-idx3-ubyte.gz
    Extracting MNIST_data	rain-labels-idx1-ubyte.gz
    Extracting MNIST_data	10k-images-idx3-ubyte.gz
    Extracting MNIST_data	10k-labels-idx1-ubyte.gz
    Iter1,Testing accuracy0.8339
    Iter2,Testing accuracy0.895
    Iter3,Testing accuracy0.9011
    Iter4,Testing accuracy0.9053
    Iter5,Testing accuracy0.908
    Iter6,Testing accuracy0.9117
    Iter7,Testing accuracy0.9123
    Iter8,Testing accuracy0.913
    Iter9,Testing accuracy0.9147
    Iter10,Testing accuracy0.9166
    Iter11,Testing accuracy0.9178
    Iter12,Testing accuracy0.9189
    Iter13,Testing accuracy0.9183
    Iter14,Testing accuracy0.9178
    Iter15,Testing accuracy0.9198
    Iter16,Testing accuracy0.92
    Iter17,Testing accuracy0.9206
    Iter18,Testing accuracy0.9206
    Iter19,Testing accuracy0.9208
    Iter20,Testing accuracy0.9209
    Iter21,Testing accuracy0.9212
  • 相关阅读:
    struts2中拦截器与过滤器之间的区别
    使用struts2中默认的拦截器以及自定义拦截器
    图解Tomcat类加载机制
    Eclipse项目中引用第三方jar包时将项目打包成jar文件的两种方式
    SQL中的四种连接方式
    My97datepicker日期控件
    Java中如何判断一个日期字符串是否是指定的格式
    jxl导入/导出excel
    优化myeclipse启动速度以及解决内存不足问题
    170726、常用 Git 命令清单
  • 原文地址:https://www.cnblogs.com/Mjerry/p/9828075.html
Copyright © 2011-2022 走看看