zoukankan      html  css  js  c++  java
  • 深度学习04--卷积神经网络

    卷积神经网络

    与神经网络的对比

    • 传统意义上的多层神经网络是只有输入层、隐藏层、输出层。其中隐藏层的层数根据需要而定,没有明确的理论推导来说明到底多少层合适
    • 卷积神经网络CNN,在原来多层神经网络的基础上,加入了更加有效的特征学习部分,具体操作就是在原来的全连接层前面加入了卷积层与池化层。卷积神经网络出现,使得神经网络层数得以加深,“深度”学习由此而来。

    网络原理

    三个结构

    神经网络(neural networks)的基本组成包括输入层、隐藏层、输出层。而卷积神经网络的特点在于隐藏层分为卷积层和池化层(pooling layer,又叫下采样层)以及激活层。每一层的作用

    • 卷积层:通过在原始图像上平移来提取特征
    • 激活层:增加非线性分割能力
    • 池化层:减少学习的参数,降低网络的复杂度(最大池化和平均池化)

    为了能够达到分类效果,还会有一个全连接层(Full Connection)也就是最后的输出层,进行损失计算并输出分类结果。

    卷积层

    卷积神经网络中每层卷积层由若干卷积单元(卷积核)组成,每个卷积单元的参数都是通过反向传播算法最佳化得到的。
    卷积运算的目的是特征提取,第一层卷积层可能只能提取一些低级的特征如边缘、线条和角等层级,更多层的网络能从低级特征中迭代提取更复杂的特征。

    卷积核(Filter)的四大要素

    • 卷积核个数

    那么如果在某一层结构当中,不止是一个人观察,多个人(卷积核)一起去观察。那就得到多张观察结果。不同的卷积核带的权重和偏置都不一样,即随机初始化的参数

    • 卷积核大小(1*1,3*3,5*5)

    • 卷积核步长

     

    • 卷积核零填充大小

    输出大小计算公式

    卷积网络API

    激活函数

    Relu

     

    为什么采用新的激活函数

    激活函数API

    深化层

    Pooling层主要的作用是特征提取,通过去掉Feature Map中不重要的样本,进一步减少参数数量。Pooling的方法很多,通常采用最大池化

    • max_polling:取池化窗口的最大值
    • avg_polling:取池化窗口的平均值

    深化层计算

    池化层也有窗口的大小以及移动步长,那么之后的输出大小怎么计算?计算公式同卷积计算公式一样,通常池化层采用2x2大小、步长为2窗口

    深化层API

    全连接层

    前面的卷积和池化相当于做特征工程,最后的全连接层在整个卷积神经网络中起到“分类器”的作用。

    总结

    案例:CNN-Mnist手写数字识别

    网络设计

     

    代码

    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    
    tf.compat.v1.disable_eager_execution()
    # 1、利用数据,在训练的时候实时提供数据
    # mnist手写数字数据在运行时候实时提供给给占位符
    
    
    tf.compat.v1.app.flags.DEFINE_integer("is_train", 1, "指定是否是训练模型,还是拿数据去预测")
    FLAGS = tf.compat.v1.app.flags.FLAGS
    
    
    def create_weights(shape):
        return tf.Variable(initial_value=tf.compat.v1.random_normal(shape=shape, stddev=0.01))
    
    
    def create_model(x):
        """
        构建卷积神经网络
        :param x:
        :return:
        """
        # 1)第一个卷积大层
        with tf.compat.v1.variable_scope("conv1"):
    
            # 卷积层
            # 将x[None, 784]形状进行修改
            input_x = tf.reshape(x, shape=[-1, 28, 28, 1])
            # 定义filter和偏置
            conv1_weights = create_weights(shape=[5, 5, 1, 32])
            conv1_bias = create_weights(shape=[32])
            conv1_x = tf.compat.v1.nn.conv2d(input=input_x, filter=conv1_weights, strides=[1, 1, 1, 1], padding="SAME") + conv1_bias
    
            # 激活层
            relu1_x = tf.nn.relu(conv1_x)
    
            # 池化层
            pool1_x = tf.compat.v1.nn.max_pool(value=relu1_x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
    
        # 2)第二个卷积大层
        with tf.compat.v1.variable_scope("conv2"):
    
            # 卷积层
            # 定义filter和偏置
            conv2_weights = create_weights(shape=[5, 5, 32, 64])
            conv2_bias = create_weights(shape=[64])
            conv2_x = tf.compat.v1.nn.conv2d(input=pool1_x, filter=conv2_weights, strides=[1, 1, 1, 1], padding="SAME") + conv2_bias
    
            # 激活层
            relu2_x = tf.compat.v1.nn.relu(conv2_x)
    
            # 池化层
            pool2_x = tf.compat.v1.nn.max_pool(value=relu2_x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
    
        # 3)全连接层
        with tf.compat.v1.variable_scope("full_connection"):
            # [None, 7, 7, 64]->[None, 7 * 7 * 64]
            # [None, 7 * 7 * 64] * [7 * 7 * 64, 10] = [None, 10]
            x_fc = tf.reshape(pool2_x, shape=[-1, 7 * 7 * 64])
            weights_fc = create_weights(shape=[7 * 7 * 64, 10])
            bias_fc = create_weights(shape=[10])
            y_predict = tf.matmul(x_fc, weights_fc) + bias_fc
    
        return y_predict
    
    
    def full_connected_mnist():
        """
        单层全连接神经网络识别手写数字图片
        特征值:[None, 784]
        目标值:one_hot编码 [None, 10]
        :return:
        """
        mnist = input_data.read_data_sets("../mnist_data/", one_hot=True)
        # 1、准备数据
        # x [None, 784] y_true [None. 10]
        with tf.compat.v1.variable_scope("mnist_data"):
            x = tf.compat.v1.placeholder(tf.float32, [None, 784])
            y_true = tf.compat.v1.placeholder(tf.int32, [None, 10])
    
        y_predict = create_model(x)
    
        # 3、softmax回归以及交叉熵损失计算
        with tf.compat.v1.variable_scope("softmax_crossentropy"):
            # labels:真实值 [None, 10]  one_hot
            # logits:全脸层的输出[None,10]
            # 返回每个样本的损失组成的列表
            loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y_predict))
    
        # 4、梯度下降损失优化
        with tf.compat.v1.variable_scope("optimizer"):
            # 学习率
            train_op = tf.compat.v1.train.AdamOptimizer(0.001).minimize(loss)
    
        # 5、得出每次训练的准确率(通过真实值和预测值进行位置比较,每个样本都比较)
        with tf.compat.v1.variable_scope("accuracy"):
            equal_list = tf.equal(tf.argmax(y_true, 1), tf.argmax(y_predict, 1))
            accuracy = tf.reduce_mean(tf.cast(equal_list, tf.float32))
    
        # (2)收集要显示的变量
        # 先收集损失和准确率
        #tf.summary.scalar("losses", loss)
        #tf.summary.scalar("acc", accuracy)
    
        # 初始化变量op
        init_op = tf.compat.v1.global_variables_initializer()
    
        # (3)合并所有变量op
        #merged = tf.compat.v1.summary.merge_all()
    
        # 创建模型保存和加载
        #saver = tf.compat.v1.train.Saver()
    
        # 开启会话去训练
        with tf.compat.v1.Session() as sess:
            # 初始化变量
            sess.run(init_op)
    
            # (1)创建一个events文件实例
            #file_writer = tf.compat.v1.summary.FileWriter("../tmp/summary/", graph=sess.graph)
    
            # 加载模型
            # if os.path.exists("./tmp/modelckpt/checkpoint"):
            #     saver.restore(sess, "./tmp/modelckpt/fc_nn_model")
    
            if FLAGS.is_train == 1:
                # 循环步数去训练
                for i in range(500):
                    # 获取数据,实时提供
                    # 每步提供50个样本训练
                    mnist_x, mnist_y = mnist.train.next_batch(50)
                    # 运行训练op
                    sess.run(train_op, feed_dict={x: mnist_x, y_true: mnist_y})
                    print("训练第%d步的准确率为:%f, 损失为:%f " % (i+1,
                                         sess.run(accuracy, feed_dict={x: mnist_x, y_true: mnist_y}),
                                         sess.run(loss, feed_dict={x: mnist_x, y_true: mnist_y})
                                         )
                      )
    
                    # 运行合变量op,写入事件文件当中
                    #summary = sess.run(merged, feed_dict={x: mnist_x, y_true: mnist_y})
                    #file_writer.add_summary(summary, i)
                    # if i % 100 == 0:
                    #     saver.save(sess, "./tmp/modelckpt/fc_nn_model")
    
            else:
                # 如果不是训练,我们就去进行预测测试集数据
                for i in range(100):
                    # 每次拿一个样本预测
                    mnist_x, mnist_y = mnist.test.next_batch(1)
                    print("第%d个样本的真实值为:%d, 模型预测结果为:%d" % (
                                                          i+1,
                                                          tf.argmax(sess.run(y_true, feed_dict={x: mnist_x, y_true: mnist_y}), 1).eval(),
                                                          tf.argmax(sess.run(y_predict, feed_dict={x: mnist_x, y_true: mnist_y}), 1).eval()
                                                          )
                                                          )
    
        return None
    
    
    if __name__ == "__main__":
        full_connected_mnist()

  • 相关阅读:
    拦截器实现对用户是否登录及登陆超时的验证
    Spring+Websocket实现消息的推送
    经典 socket通讯 -- 已验证
    Unity编辑器扩展之RequireComponent等详解
    如何理解着色器,渲染管线,光栅化等概念?
    Unity3D研究院编辑器之脚本设置ToolBar及脚本设置顶视图
    Unity3D研究院编辑器之重写Hierarchy的右键菜单
    Unity3D研究院编辑器之自定义默认资源的Inspector面板
    Unity3D研究院之拓展系统自带组件的Inspector视图
    Unity3D研究院之Inspector视图中的get/set使用
  • 原文地址:https://www.cnblogs.com/MoooJL/p/14347343.html
Copyright © 2011-2022 走看看