zoukankan      html  css  js  c++  java
  • 二项式反演

    也许更好的阅读体验

    表达

    若有(f(n)=sum_{i=0}^ninom{n}{i}g(i))
    则有(g(n)=sum_{i=0}^n(-1)^{n-i}inom{n}{i}f(i))


    证明

    (egin{aligned}g(n)&=sum_{i=0}^n(-1)^{n-i}inom{n}{i}f(i)\ &=sum_{i=0}^n(-1)^{n-i}inom{n}{i}sum_{j=0}^iinom{i}{j}g(j)\ &=sum_{i=0}^nsum_{j=0}^i(-1)^{n-i}inom{n}{i}inom{i}{j}g(j)\ &=sum_{j=0}^nsum_{i=j}^n(-1)^{n-i}inom{n}{i}inom{i}{j}g(j)\ end{aligned})
    在组合数中,有这么一个式子
    (egin{aligned}inom{i}{j}inom{j}{k} &= frac{i!}{j!(i - j)!}frac{j!}{k!(j - k)!} \ &=dfrac {i!}{k!left( i-k ight) !}dfrac {left( i-k ight) !}{left( i-j ight) !left( j-k ight) !}\ &=dfrac {i!}{k!left( i-k ight) !}dfrac {left( i-k ight) !}{left( left( i-k ight) -left( j-k ight) ight) !left( j-k ight) !}\ &=egin{pmatrix} i \ k end{pmatrix}egin{pmatrix} i-k \ j-k end{pmatrix}end{aligned})

    (egin{aligned}inom{i}{j}inom{j}{k}=egin{pmatrix} i \ k end{pmatrix}egin{pmatrix} i-k \ j-k end{pmatrix}end{aligned})
    所以
    (egin{aligned}原式&=sum_{j=0}^nsum_{i=j}^n(-1)^{n-i}inom{n}{j}inom{n-j}{i-j}g(j)\ &=sum_{j=0}^nsum ^{n-j}_{i=0}left( -1 ight) ^{n-i-j}egin{pmatrix} n \ j end{pmatrix}egin{pmatrix} n-j \ i end{pmatrix}g(j)\ &=sum_{j=0}^nleft(1-1 ight)^{n-j}egin{pmatrix} n \ j end{pmatrix}gleft(j ight) end{aligned})
    此时要求(n != j),此时(原式=0)
    (n=j)时,(原式=g(n))

    到此,原式得证

    如有哪里讲得不是很明白或是有错误,欢迎指正
    如您喜欢的话不妨点个赞收藏一下吧

  • 相关阅读:
    二元关系最小割
    DG观察日志传输
    [WC2007]剪刀石头布——费用流
    备库报 ORA-00313、ORA-00312、ORA-27037
    「清华集训 2017」无限之环
    The listener supports no services
    [SDOI2010]星际竞速——费用流
    ORA-16055: FAL request rejected
    [总结]网络流
    ORA-16047: DGID mismatch between destination setting and standby
  • 原文地址:https://www.cnblogs.com/Morning-Glory/p/11327177.html
Copyright © 2011-2022 走看看