题目:洛谷P3195、BZOJ1010。
题目大意:
$$dp[i]=minlimits _{j<i}{dp[j]+(i-j-1+sumlimits _{k=j+1} ^i c_k -L)^2}$$
求(dp[n])
解题思路:
记(a_i=sumlimits _{j=1}^i c_j ),
则(dp[i]=minlimits _{j<i}{dp[j]+(i-j-1+a_i -a_j-L)^2})
令(b_i=a_i+1),(d_i=b_i-L-1),则(dp[i]=minlimits _{j<i}{dp[j]+(d_i-b_j)^2})
若状态(j)比(k)优秀,则(dp[j]+(d_i-b_j)^2 <dp[k]+(d_i-b_k)^2)
化简得(dp[j]+b_j ^2 -dp[k]-b_k^2 <(2b_j -2b_k)d_i)
令(x_i=2b_i),(y_i=dp[i]+b_i),则( y_j-y_k<(x_j-x_k)d_i )
考虑(j<k<l),有(x_j<x_k<x_l)
若(k)有用,则存在(d_i)使得(y_k-y_lleqslant (x_k-x_l)d_i ,y_k-y_j<(x_k-x_j)d_i)
于是(frac{y_k-y_j}{x_k-x_j}<d_ileqslant frac{y_l-y_k}{x_l-x_k})
然后单调队列维护斜率即可。
(以上抄自lyx_cjz)
C++ Code:
//f[i]=min{f[j]+(i-j-1+s[i]-s[j-1]-L)^2}
//b[i]=s[i]+i,d[i]=b[i]-L-1
#include<bits/stdc++.h>
#define LoveLive long long
#define N 50005
int n,l;
LoveLive f[N],s[N];
int q[N],c[N];
inline LoveLive b(const int i){return s[i]+i;}
inline LoveLive d(const int i){return s[i]+i-l-1;}
inline LoveLive sqr(const LoveLive t){return t*t;}
inline LoveLive x(const int i){return b(i)<<1;}
inline LoveLive y(const int i){return f[i]+sqr(b(i));}
inline double slope(const int a,const int b){
return 1.*(y(a)-y(b))/(x(a)-x(b));
}
int main(){
scanf("%d%d",&n,&l);
s[0]=0;
for(int i=1;i<=n;++i){
scanf("%d",&c[i]);
s[i]=s[i-1]+c[i];
}
q[0]=0;f[0]=0;
int l=0,r=0;
for(int i=1;i<=n;++i){
while(l<r&&slope(q[l],q[l+1])<=d(i))++l;
f[i]=f[q[l]]+sqr(b(q[l])-d(i));
while(l<r&&slope(q[r-1],q[r])>=slope(q[r],i))--r;
q[++r]=i;
}
printf("%lld
",f[n]);
return 0;
}