zoukankan      html  css  js  c++  java
  • hdu5730 Shell Necklace 【分治fft】

    题目

    简述:

    有一段长度为n的贝壳,将其划分为若干段,给出划分为每种长度的方案数,问有多少种划分方案

    题解

    (f[i])表示长度为(i)时的方案数
    不难得dp方程:

    [f[i] = sumlimits_{j=0}^{i} a[j] * f[i - j] ]

    考虑转移
    直接转移是(O(n^2))
    如何优化?
    容易发现这个转移方程非常特别,是一个卷积的形式
    考虑fft

    分治fft##

    分治fft解决的就是这样一个转移方程的快速计算的问题

    [f[i] = sumlimits_{j=0}^{i} a[j] * f[i - j] ]

    考虑cdq分治的模式:
    我们先处理左半区间,然后用左半区间的(f[i])来更新右半区间的答案
    具体地,左半区间对右边一个位置(r)的贡献是:

    [sumlimits_{i=l}^{mid} f[i] * a[r - i] ]

    也是一个卷积的形式,为多项式乘积的第(r)
    如此我们便可以用(f[i])(a[i])构造两个多项式,作fft,然后直接将相应位置的值累加到右半边相应位置的(f[i])中去

    我们便解决了这道题

    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<cstring>
    #include<algorithm>
    #define LL long long int
    #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
    #define REP(i,n) for (int i = 1; i <= (n); i++)
    #define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
    using namespace std;
    const int maxn = 400005,maxm = 100005,INF = 1000000000,P = 313;
    inline int read(){
    	int out = 0,flag = 1; char c = getchar();
    	while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
    	while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
    	return out * flag;
    }
    const double pi = acos(-1);
    struct E{
    	double r,i;
    	E(){}
    	E(double a,double b):r(a),i(b){}
    	E operator =(const int& b){
    		r = b; i = 0;
    		return *this;
    	}
    };
    inline E operator +(const E& a,const E& b){
    	return E(a.r + b.r,a.i + b.i);
    }
    inline E operator -(const E& a,const E& b){
    	return E(a.r - b.r,a.i - b.i);
    }
    inline E operator *(const E& a,const E& b){
    	return E(a.r * b.r - a.i * b.i,a.r * b.i + b.r * a.i);
    }
    inline E operator *=(E& a,const E& b){
    	return (a = a * b);
    }
    inline E operator /(E& a,const double& b){
    	return E(a.r / b,a.i / b);
    }
    inline E operator /=(E& a,const double& b){
    	return (a = a / b);
    }
    int n,m,L,R[maxn];
    void fft(E* a,int f){
    	for (int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);
    	for (int i = 1; i < n; i <<= 1){
    		E wn(cos(pi / i),f * sin(pi / i));
    		for (int j = 0; j < n; j += (i << 1)){
    			E w(1,0);
    			for (int k = 0; k < i; k++,w *= wn){
    				E x = a[j + k],y = w * a[j + k + i];
    				a[j + k] = x + y; a[j + k + i] = x - y;
    			}
    		}
    	}
    	if (f == -1) for (int i = 0; i < n; i++) a[i] /= n;
    }
    E A[maxn],B[maxn];
    int N,a[maxn],f[maxn];
    void solve(int l,int r){
    	if (l == r){
    		f[l] = (f[l] + a[l]) % P;
    		return;
    	}
    	int mid = l + r >> 1;
    	solve(l,mid);
    	n = mid - l + 1;
    	for (int i = 0; i < n; i++) A[i] = f[l + i];
    	m = r - l + 1;
    	for (int i = 0; i < m; i++) B[i] = a[i + 1];
    	m = n + m; L = 0;
    	for (n = 1; n <= m; n <<= 1) L++;
    	for (int i = 0; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
    	fft(A,1); fft(B,1);
    	for (int i = 0; i < n; i++) A[i] *= B[i];
    	fft(A,-1);
    	for (int i = mid + 1; i <= r; i++){
    		f[i] = (f[i] + (int)floor(A[i - l - 1].r + 0.5) % P) % P;
    	}
    	for (int i = 0; i < n; i++) A[i] = B[i] = 0;
    	solve(mid + 1,r);
    }
    int main(){
    	while ((~scanf("%d",&N)) && N){
    		for (int i = 1; i <= N; i++){
    			a[i] = read() % P;
    			f[i] = 0;
    		}
    		solve(1,N);
    		printf("%d
    ",f[N]);
    	}
    	return 0;
    }
    
    
  • 相关阅读:
    php中字符与字节的区别
    sql把两值之和当作条件进行查询
    Intel® Neural Compute Stick 2
    使用OpenCV的VideoCapture 读取.mp4文件时出现以下错误:Unable to stop the stream: Inappropriate ioctl for device
    更换Raspbian Buster源
    OpenCV之cv2函数 2
    OpenCV中cv2的用法
    OpenVINO 对象识别 real_time_object_detection Movidius
    树莓派和计算棒实现图形识别 RaspBerry Pi4 with OpenVino and Movidius
    树莓派无线网卡老是掉线
  • 原文地址:https://www.cnblogs.com/Mychael/p/8761814.html
Copyright © 2011-2022 走看看