zoukankan      html  css  js  c++  java
  • POJ3585 Accumulation Degree 【树形dp】

    题目链接

    POJ3585

    题解

    -二次扫描与换根法-
    对于这样一个无根树的树形dp
    我们先任选一根进行一次树形dp
    然后再扫一遍通过计算得出每个点为根时的答案

    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<cstring>
    #include<algorithm>
    #define LL long long int
    #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
    #define REP(i,n) for (int i = 1; i <= (n); i++)
    #define cls(s) memset(s,0,sizeof(s))
    using namespace std;
    const int maxn = 200005,maxm = 400005,INF = 1000000000;
    inline int read(){
    	int out = 0,flag = 1; char c = getchar();
    	while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
    	while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
    	return out * flag;
    }
    int h[maxn],ne = 2,de[maxn];
    struct EDGE{int to,nxt,w;}ed[maxm];
    inline void build(int u,int v,int w){
    	ed[ne] = (EDGE){v,h[u],w}; h[u] = ne++;
    	ed[ne] = (EDGE){u,h[v],w}; h[v] = ne++;
    	de[u]++; de[v]++;
    }
    int n,fa[maxn];
    int d[maxn],f[maxn],g[maxn],ans;
    void dfs1(int u){
    	f[u] = 0;
    	if (de[u] == 1 && u != 1) return;
    	Redge(u) if ((to = ed[k].to) != fa[u]){
    		fa[to] = u; d[to] = ed[k].w; dfs1(to);
    		if (de[to] == 1) f[u] += ed[k].w;
    		else f[u] += min(ed[k].w,f[to]);
    	}
    }
    void dfs2(int u){
    	g[u] = f[u];
    	if (fa[u]){
    		if (de[fa[u]] == 1) g[u] += d[u];
    		else g[u] += min(d[u],g[fa[u]] - min(d[u],f[u]));
    	}
    	ans = max(ans,g[u]);
    	Redge(u) if ((to = ed[k].to) != fa[u]){
    		dfs2(to);
    	}
    }
    int main(){
    	int T = read();
    	while (T--){
    		ne = 2; cls(h); cls(de); ans = 0;
    		n = read(); int a,b,w;
    		for (int i = 1; i < n; i++){
    			a = read(); b = read(); w = read();
    			build(a,b,w);
    		}
    		dfs1(1);
    		//REP(i,n) printf("%lld ",f[i]); puts("");
    		dfs2(1);
    		//REP(i,n) printf("%lld ",g[i]); puts("");
    		printf("%d
    ",ans);
    	}
    	return 0;
    }
    
    
  • 相关阅读:
    Maven安装以及Idea安装
    EasyUi和jQuery模拟后台管理页面
    EasyUI初级入门2
    EasyUI初级入门
    JS高级
    好用的表单验证工具 vuelidate
    为页面/接口添加加载进度条
    Nuxt.js(二、解决首屏速度与SEO)
    Nuxt 的介绍与安装
    Axios及其async await封装
  • 原文地址:https://www.cnblogs.com/Mychael/p/9019025.html
Copyright © 2011-2022 走看看