zoukankan      html  css  js  c++  java
  • BZOJ5093 [Lydsy1711月赛]图的价值 【第二类斯特林数 + NTT】

    题目链接

    BZOJ5093

    题解

    点之间是没有区别的,所以我们可以计算出一个点的所有贡献,然后乘上(n)
    一个点可能向剩余的(n - 1)个点连边,那么就有

    [ans = 2^{{n - 1 choose 2}}n sumlimits_{i = 0}^{n - 1} {n - 1 choose i} i^k ]

    显然要求

    [sumlimits_{i = 0}^{n} {n choose i} i^k ]

    然后我就不知道怎么做了。。

    翻翻题解
    有这样一个结论:

    [n^k = sumlimits_{i = 0}^{k} egin{Bmatrix} k \ i end{Bmatrix} {n choose i} i! ]

    那么就有

    [egin{aligned} sumlimits_{i = 0}^{n} {n choose i} i^k &= sumlimits_{i = 0}^{n} {n choose i} sumlimits_{j = 0}^{i} egin{Bmatrix} k \ j end{Bmatrix} {i choose j}j! \ &= sumlimits_{j = 0}^{n}egin{Bmatrix} k \ j end{Bmatrix} j! sumlimits_{i = j}^{n} {n choose i} {i choose j} \ &= sumlimits_{j = 0}^{n}egin{Bmatrix} k \ j end{Bmatrix} j! {n choose j} 2^{n - j} \ end{aligned} ]

    解释一下最后一步

    [sumlimits_{i = j}^{n} {n choose i} {i choose j} ]

    直观来看是从(n)中取出(i)个,然后从(i)中取出(j)
    实际上等价于从(n)中取出(j)个,剩余随便取

    最后只需要求出第二类斯特林数,用第二类斯特林反演即可

    [egin{aligned} egin{Bmatrix} n \ m end{Bmatrix} &= frac{1}{m!} sumlimits_{i = 0}^{m} (-1)^{i}{m choose i}(m - i)^{n} \ &= sumlimits_{i = 0}^{m} frac{(-1)^{i}}{i!} imes frac{(m - i)^{n}}{(m - i)!} \ end{aligned} ]

    (NTT)即可

    #include<algorithm>
    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<cmath>
    #include<map>
    #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
    #define REP(i,n) for (int i = 1; i <= (n); i++)
    #define mp(a,b) make_pair<int,int>(a,b)
    #define cls(s) memset(s,0,sizeof(s))
    #define cp pair<int,int>
    #define LL long long int
    using namespace std;
    const int maxn = 800005,maxm = 100005,INF = 1000000000;
    inline int read(){
    	int out = 0,flag = 1; char c = getchar();
    	while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
    	while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
    	return out * flag;
    }
    const int G = 3,P = 998244353;
    inline int qpow(int a,LL b){
    	int re = 1;
    	for (; b; b >>= 1,a = 1ll * a * a % P)
    		if (b & 1) re = 1ll * re * a % P;
    	return re;
    }
    int R[maxn];
    void NTT(int* a,int n,int f){
    	for (int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);
    	for (int i = 1; i < n; i <<= 1){
    		int gn = qpow(G,(P - 1) / (i << 1));
    		for (int j = 0; j < n; j += (i << 1)){
    			int g = 1,x,y;
    			for (int k = 0; k < i; k++,g = 1ll * g * gn % P){
    				x = a[j + k],y = 1ll * g * a[j + k + i] % P;
    				a[j + k] = (x + y) % P,a[j + k + i] = ((x - y) % P + P) % P;
    			}
    		}
    	}
    	if (f == 1) return;
    	int nv = qpow(n,P - 2); reverse(a + 1,a + n);
    	for (int i = 0; i < n; i++) a[i] = 1ll * a[i] * nv % P;
    }
    int fac[maxn],inv[maxn],fv[maxn],C[maxn];
    int S[maxn],B[maxn],N,K;
    void init(){
    	fac[0] = fac[1] = inv[0] = inv[1] = fv[0] = fv[1] = 1;
    	for (int i = 2; i <= K; i++){
    		fac[i] = 1ll * fac[i - 1] * i % P;
    		inv[i] = 1ll * (P - P / i) * inv[P % i] % P;
    		fv[i] = 1ll * fv[i - 1] * inv[i] % P;
    	}
    	C[0] = 1; int E = min(N - 1,K);
    	for (int i = 1; i <= E; i++) C[i] = 1ll * C[i - 1] * (N - i) % P * inv[i] % P;
    }
    void work(){
    	int n = 1,L = 0;
    	for (int i = 0; i <= K; i++){
    		S[i] = (((i & 1) ? -1 : 1) * fv[i] + P) % P;
    		B[i] = 1ll * qpow(i,K) * fv[i] % P;
    	}
    	while (n <= (K << 1)) n <<= 1,L++;
    	for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
    	NTT(S,n,1); NTT(B,n,1);
    	for (int i = 0; i < n; i++) S[i] = 1ll * S[i] * B[i] % P;
    	NTT(S,n,-1);
    	//REP(i,10) printf("%d ",S[i]); puts("");
    	int ans = 0;
    	for (int i = 0; i < N; i++){
    		if (i > K) break;
    		ans = (ans + 1ll * S[i] * fac[i] % P * C[i] % P * qpow(2,N - 1 - i) % P) % P;
    	}
    	ans = 1ll * ans * N % P * qpow(2,1ll * (N - 1) * (N - 2) / 2) % P;
    	printf("%d
    ",ans);
    }
    int main(){
    	N = read(); K = read();
    	if (N == 1){puts("0"); return 0;}
    	if (N == 2){puts("2"); return 0;}
    	init();
    	work();
    	return 0;
    }
    
    
  • 相关阅读:
    智能移动机器人背后蕴含的技术——激光雷达
    Kalman Filters
    Fiddler抓HttpClient的包
    VSCode开发WebApi EFCore的坑
    WPF之小米Logo超圆角的实现
    windows react打包发布
    jenkins in docker踩坑汇总
    Using ML.NET in Jupyter notebooks 在jupyter notebook中使用ML.NET ——No design time or full build available
    【Linux知识点】CentOS7 更换阿里云源
    【Golang 报错】exec gcc executable file not found in %PATH%
  • 原文地址:https://www.cnblogs.com/Mychael/p/9186590.html
Copyright © 2011-2022 走看看