zoukankan      html  css  js  c++  java
  • BZOJ3456 城市规划 【多项式求ln】

    题目链接

    BZOJ3456

    题解

    真是一道经典好题,至此已经写了分治(NTT),多项式求逆,多项式求(ln)三种写法

    我们发现我们要求的是大小为(n)无向联通图的数量
    (n)个点的无向图是由若干个无向联通图构成的
    那么我们设(F(x))为无向联通图数量的指数型生成函数
    (G(x))为无向图数量的指数型生成函数

    (G(x))很好求

    [G(x) = frac{F(x)}{1!} + frac{F^2(x)}{2!} + frac{F^3(x)}{3!} + dots = e^{F(x)} ]

    [F(x) = lnG(x) ]

    多项式求(ln)即可

    #include<algorithm>
    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<cmath>
    #include<map>
    #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
    #define REP(i,n) for (int i = 1; i <= (n); i++)
    #define mp(a,b) make_pair<int,int>(a,b)
    #define cls(s) memset(s,0,sizeof(s))
    #define cp pair<int,int>
    #define LL long long int
    using namespace std;
    const int maxn = 500005,maxm = 100005,INF = 1000000000;
    inline int read(){
    	int out = 0,flag = 1; char c = getchar();
    	while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
    	while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
    	return out * flag;
    }
    const int G = 3,P = 1004535809;
    int R[maxn];
    inline int qpow(int a,LL b){
    	int re = 1;
    	for (; b; b >>= 1,a = 1ll * a * a % P)
    		if (b & 1) re = 1ll * re * a % P;
    	return re;
    }
    void NTT(int* a,int n,int f){
    	for (int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);
    	for (int i = 1; i < n; i <<= 1){
    		int gn = qpow(G,(P - 1) / (i << 1));
    		for (int j = 0; j < n; j += (i << 1)){
    			int g = 1,x,y;
    			for (int k = 0; k < i; k++,g = 1ll * g * gn % P){
    				x = a[j + k],y = 1ll * g * a[j + k + i] % P;
    				a[j + k] = (x + y) % P,a[j + k + i] = ((x - y) % P + P) % P;
    			}
    		}
    	}
    	if (f == 1) return;
    	int nv = qpow(n,P - 2); reverse(a + 1,a + n);
    	for (int i = 0; i < n; i++) a[i] = 1ll * a[i] * nv % P;
    }
    int n,c[maxn],f[maxn],g[maxn],Fv[maxn];
    int fac[maxn],fv[maxn],inv[maxn];
    void init(){
    	fac[0] = fac[1] = fv[0] = fv[1] = inv[0] = inv[1] = 1;
    	for (int i = 2; i <= (n << 1); i++){
    		fac[i] = 1ll * fac[i - 1] * i % P;
    		inv[i] = 1ll * (P - P / i) * inv[P % i] % P;
    		fv[i] = 1ll * fv[i - 1] * inv[i] % P;
    	}
    }
    void Inv(int* a,int* b,int deg){
    	if (deg == 1){b[0] = qpow(a[0],P - 2); return;}
    	Inv(a,b,(deg + 1) >> 1);
    	int n = 1,L = 0;
    	while (n < (deg << 1)) n <<= 1,L++;
    	for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
    	for (int i = 0; i < deg; i++) c[i] = a[i];
    	for (int i = deg; i < n; i++) c[i] = 0;
    	NTT(c,n,1); NTT(b,n,1);
    	for (int i = 0; i < n; i++)
    		b[i] = 1ll * ((2ll - 1ll * c[i] * b[i] % P) + P) % P * b[i] % P;
    	NTT(b,n,-1);
    	for (int i = deg; i < n; i++) b[i] = 0;
    }
    void Der(int* a,int& n){
    	n--;
    	for (int i = 0; i <= n; i++) a[i] = 1ll * a[i + 1] * (i + 1) % P;
    }
    void Int(int* a,int& n){
    	n++;
    	for (int i = n; i; i--) a[i] = 1ll * a[i - 1] * inv[i] % P;
    }
    void Getln(int* a,int* b){
    	int deg = n;
    	Inv(a,Fv,n + 1);
    	Der(a,deg);
    	int m = deg + n,n = 1,L = 0;
    	while (n <= m) n <<= 1,L++;
    	for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
    	NTT(a,n,1); NTT(Fv,n,1);
    	for (int i = 0; i < n; i++) a[i] = 1ll * a[i] * Fv[i] % P;
    	NTT(a,n,-1);
    	deg = m;
    	Int(a,deg);
    	for (int i = 0; i <= deg; i++) b[i] = a[i];
    }
    int main(){
    	n = read();
    	init();
    	f[0] = f[1] = 1;
    	for (int i = 2; i <= n; i++)
    		f[i] = 1ll * qpow(2,1ll * i * (i - 1) / 2) * fv[i] % P;
    	Getln(f,g);
    	printf("%lld
    ",1ll * g[n] * fac[n] % P);
    	return 0;
    }
    
    
  • 相关阅读:
    PIL库,图像处理第三方库
    文件指针
    机器学习之KNN---k最近邻算法-机器学习
    python 中的内置高级函数
    sklearn中standardscaler中fit_transform()和transform()有什么区别,应该怎么使用?
    python中导入sklearn中模块提示ImportError: DLL load failed: 找不到指定的程序。
    pandas中读取文件报错
    beacon帧字段结构最全总结(一)——beacon基本结构
    python中实例方法,类方法,静态方法简单理解
    一种logging封装方法,不会产生重复log
  • 原文地址:https://www.cnblogs.com/Mychael/p/9187952.html
Copyright © 2011-2022 走看看