题目链接
题解
学过高中数学都应知道,我们要求(p)的极值,参变分离为
[h_j + sqrt{|i - j|} - h_i le p
]
实际上就是求(h_j + sqrt{|i - j|} - h_i)的最大值
就可以设(f[i])表示对(i)最大的该式的值
绝对值通常要去掉,一般可以通过方向性,我们只需每次转移时令(i > j),正反转移两次即可
现在式子变为
[f[i] = max{h_j + sqrt{i - j}} - h_i
]
发现(sqrt{i - j})依旧无法处理,无法展开使用我们喜闻乐见的斜率优化
此时就可以考虑这个式子是否具有决策单调性
我们考虑对于(i'<i),我们的决策为(h_j + sqrt{i' - j})
那么对于(forall k < j)有(h_k + sqrt{i' - k} < h_j + sqrt{i' - j})
现在我们用(i)替换(i')
式子变为(h_k + sqrt{i - k})和(h_j + sqrt{i - j})
(h_k)和(h_j)是没有变化的,如果(sqrt{i - j})的增长比(sqrt{i - k})的增长要快,我们就可认定(i)替换(i')后,(k)依旧无法作为最优决策
考虑函数
[f(x) = sqrt{x}
]
[f'(x) = frac{1}{2sqrt{x}}
]
显然当(x)越大增长率越慢,而(i' - k > i' - j),(sqrt{i - j})的增长的确比(sqrt{i - k})的增长要快
得证
所以用队列维护三元组优化即可
复杂度(O(nlogn))
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 500005,maxm = 100005;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
double f[maxn],h[maxn];
int n,head,tail,ans[maxn];
struct tri{int l,r,pos;}q[maxn << 1];
inline double cal(int i,int j){
return h[j] + sqrt(i - j) - h[i];
}
inline bool check(int pos,int i,int j){
return cal(pos,i) >= cal(pos,j);
}
void work(){
q[head = tail = 0] = (tri){1,n,1};
tri u;
for (int i = 1; i <= n; i++){
ans[i] = max(ans[i],(int)ceil(cal(i,q[head].pos)));
q[head].l++;
if (q[head].l > q[head].r) head++;
while (head <= tail){
u = q[tail--];
if (!check(u.r,i,u.pos)){
q[++tail] = u;
if (u.r + 1 <= n) q[++tail] = (tri){u.r + 1,n,i};
break;
}
if (check(u.l,i,u.pos)){
if (head > tail){
q[++tail] = (tri){i + 1,n,i};
break;
}
continue;
}
else {
int l = u.l,r = u.r,mid;
while (l < r){
mid = l + r >> 1;
if (check(mid,i,u.pos)) r = mid;
else l = mid + 1;
}
q[++tail] = (tri){u.l,l - 1,u.pos};
q[++tail] = (tri){l,n,i};
break;
}
}
}
}
int main(){
n = read();
for (int i = 1; i <= n; i++) h[i] = read();
work();
reverse(h + 1,h + 1 + n);
reverse(ans + 1,ans + 1 + n);
work();
for (int i = n; i; i--)
printf("%d
",ans[i]);
return 0;
}