zoukankan      html  css  js  c++  java
  • 51nod1236 序列求和 V3 【数学】

    题目链接

    51nod1236

    题解

    用特征方程求得斐波那契通项:

    [f(n) = frac{(frac{1 + sqrt{5}}{2})^{n} - (frac{1 - sqrt{5}}{2})^{n}}{sqrt{5}} ]

    那么

    [egin{aligned} ans &= sumlimits_{i = 1}^{n} (frac{(frac{1 + sqrt{5}}{2})^{i} - (frac{1 - sqrt{5}}{2})^{i}}{sqrt{5}})^{k} \ &= (frac{1}{sqrt{5}})^{k}sumlimits_{i = 1}^{n} ((frac{1 + sqrt{5}}{2})^{i} - (frac{1 - sqrt{5}}{2})^{i})^{k} \ &= (frac{1}{sqrt{5}})^{k}sumlimits_{i = 1}^{n} sumlimits_{j = 0}^{k}{k choose j}(-1)^{k - j}(frac{1 + sqrt{5}}{2})^{ij}(frac{1 - sqrt{5}}{2})^{i(k - j)} \ &= (frac{1}{sqrt{5}})^{k}sumlimits_{j = 0}^{k}{k choose j}(-1)^{k - j}sumlimits_{i = 1}^{n} (frac{1 + sqrt{5}}{2})^{ij}(frac{1 - sqrt{5}}{2})^{i(k - j)} \ &= (frac{1}{sqrt{5}})^{k}sumlimits_{j = 0}^{k}{k choose j}(-1)^{k - j}sumlimits_{i = 1}^{n} ((frac{1 + sqrt{5}}{2})^{j}(frac{1 - sqrt{5}}{2})^{k - j})^{i} end{aligned} ]

    后面用等比数列求和即可
    复杂度(O(klogn))

    #include<algorithm>
    #include<iostream>
    #include<cstdlib>
    #include<cstring>
    #include<cstdio>
    #include<vector>
    #include<queue>
    #include<cmath>
    #include<map>
    #define LL long long int
    #define REP(i,n) for (int i = 1; i <= (n); i++)
    #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
    #define cls(s,v) memset(s,v,sizeof(s))
    #define mp(a,b) make_pair<int,int>(a,b)
    #define cp pair<int,int>
    using namespace std;
    const int maxn = 100005,maxm = 100005,INF = 0x3f3f3f3f,P = 1000000009;
    inline LL read(){
    	LL out = 0,flag = 1; char c = getchar();
    	while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();}
    	while (c >= 48 && c <= 57){out = (out << 1) + (out << 3) + c - 48; c = getchar();}
    	return flag ? out : -out;
    }
    const LL s5 = 383008016;
    LL N,K,fac[maxn],inv[maxn],fv[maxn],v1[maxn],v2[maxn];
    void init(){
    	fac[0] = fac[1] = inv[0] = inv[1] = fv[0] = fv[1] = 1;
    	v1[0] = v2[0] = 1;
    	for (int i = 2; i < maxn; i++){
    		fac[i] = fac[i - 1] * i % P;
    		inv[i] = 1ll * (P - P / i) * inv[P % i] % P;
    		fv[i] = fv[i - 1] * inv[i] % P;
    	}
    	v1[1] = (1 + s5) * inv[2] % P; v2[1] = ((1 - s5) % P + P) % P * inv[2] % P;
    	for (int i = 2; i < maxn; i++){
    		v1[i] = v1[i - 1] * v1[1] % P;
    		v2[i] = v2[i - 1] * v2[1] % P;
    	}
    }
    inline LL qpow(LL a,LL b){
    	LL re = 1; a %= P;
    	for (; b; b >>= 1,a = a * a % P)
    		if (b & 1) re = re * a % P;
    	return re;
    }
    inline LL Inv(LL a){
    	if (a < maxn) return inv[a];
    	return qpow(a,P - 2);
    }
    inline LL C(LL n,LL m){
    	if (m > n) return 0;
    	return fac[n] * fv[m] % P * fv[n - m] % P;
    }
    int main(){
    	init();
    	int T = read();
    	while (T--){
    		N = read(); K = read(); LL ans = 0;
    		for (int j = 0; j <= K; j++){
    			LL t,tmp;
    			t = v1[j] * v2[K - j] % P;
    			tmp = t == 1 ? N % P : ((qpow(t,N + 1) - t) % P + P) % P * Inv(t - 1) % P;
    			tmp = tmp * C(K,j) % P;
    			if ((K - j) & 1) ans = (ans + P - tmp) % P;
    			else ans = (ans + tmp) % P;
    		}
    		printf("%lld
    ",ans * qpow(s5,K * (P - 2)) % P);
    	}
    	return 0;
    }
    
    
  • 相关阅读:
    stl 在 acm中的应用总结
    hdu_2089(数位dp)
    水dp第二天(背包有关)
    dp水一天
    poj_2195Going Home(最小费用最大流)
    poj_3281Dining(网络流+拆点)
    GSS4
    SPOJ GSS1_Can you answer these queries I(线段树区间合并)
    Ajax实现局部数据交互的一个简单实例
    对学习Ajax的知识总结
  • 原文地址:https://www.cnblogs.com/Mychael/p/9300773.html
Copyright © 2011-2022 走看看