zoukankan      html  css  js  c++  java
  • BZOJ3235 [Ahoi2013]好方的蛇 【单调栈 + dp】

    题目链接

    BZOJ3235

    题解

    求出每个点为顶点,分别求出左上,左下,右上,右下的矩形的个数(g[i][j])
    并预处理出(f[i][j])表示点((i,j))到四个角的矩形内合法矩形个数
    就可以容斥计数啦
    枚举顶点((i,j)),乘上另一侧矩形个数,如图:

    但是会算重,对于这样的情况

    减去即可

    (g[i][j])数组,枚举每一行,使用单调栈即可

    复杂度(O(n^2))

    #include<algorithm>
    #include<iostream>
    #include<cstdlib>
    #include<cstring>
    #include<cstdio>
    #include<vector>
    #include<queue>
    #include<cmath>
    #include<map>
    #define LL long long int
    #define REP(i,n) for (int i = 1; i <= (n); i++)
    #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
    #define cls(s,v) memset(s,v,sizeof(s))
    #define mp(a,b) make_pair<int,int>(a,b)
    #define cp pair<int,int>
    using namespace std;
    const int maxn = 1005,maxm = 100005,INF = 0x3f3f3f3f,P = 10007;
    inline int read(){
    	int out = 0,flag = 1; char c = getchar();
    	while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();}
    	while (c >= 48 && c <= 57){out = (out << 1) + (out << 3) + c - 48; c = getchar();}
    	return flag ? out : -out;
    }
    int f[maxn][maxn][4],g[maxn][maxn][4],n;
    int S[maxn][maxn],d[maxn][maxn][2];
    int len[maxn],h[maxn],top,tot;
    void Pre(){
    	for (int j = 1; j <= n; j++){
    		for (int i = 1; i <= n; i++){
    			if (!S[i][j]) continue;
    			d[i][j][0] = d[i - 1][j][0] + 1;
    		}
    	}
    	for (int j = 1; j <= n; j++){
    		for (int i = n; i; i--){
    			if (!S[i][j]) continue;
    			d[i][j][1] = d[i + 1][j][1] + 1;
    		}
    	}
    	for (int k = 0; k <= 1; k++){
    		for (int i = 1; i <= n; i++){
    			top = 0; tot = 0;
    			for (int j = 1; j <= n; j++){
    				if (!S[i][j]){
    					top = 0; tot = 0;
    					continue;
    				}
    				int hh = d[i][j][k],L = 1;
    				while (top && h[top] >= hh)
    					tot = ((tot - h[top] * len[top] % P) + P) % P,L += len[top--];
    				h[++top] = hh; len[top] = L; tot = (tot + hh * L) % P;
    				g[i][j][k] = (tot - 1) % P;
    			}
    		}
    	}
    	for (int k = 0; k <= 1; k++){
    		for (int i = 1; i <= n; i++){
    			top = 0; tot = 0;
    			for (int j = n; j; j--){
    				if (!S[i][j]){
    					top = 0; tot = 0;
    					continue;
    				}
    				int hh = d[i][j][k],L = 1;
    				while (top && h[top] >= hh)
    					tot = ((tot - h[top] * len[top] % P) + P) % P,L += len[top--];
    				h[++top] = hh; len[top] = L; tot = (tot + hh * L) % P;
    				g[i][j][k + 2] = (tot - 1) % P;
    			}
    		}
    	}
    	for (int i = 1; i <= n; i++)
    		for (int j = 1; j <= n; j++)
    			f[i][j][0] = (f[i - 1][j][0] + f[i][j - 1][0] - f[i - 1][j - 1][0] + g[i][j][0]) % P;
    	for (int i = n; i; i--)
    		for (int j = 1; j <= n; j++)
    			f[i][j][1] = (f[i + 1][j][1] + f[i][j - 1][1] - f[i + 1][j - 1][1] + g[i][j][1]) % P;
    	for (int i = 1; i <= n; i++)
    		for (int j = n; j; j--)
    			f[i][j][2] = (f[i - 1][j][2] + f[i][j + 1][2] - f[i - 1][j + 1][2] + g[i][j][2]) % P;
    	for (int i = n; i; i--)
    		for (int j = n; j; j--)
    			f[i][j][3] = (f[i + 1][j][3] + f[i][j + 1][3] - f[i + 1][j + 1][3] + g[i][j][3]) % P;
    }
    void work(){
    	int ans = 0;
    	for (int i = 1; i <= n; i++)
    		for (int j = 1; j <= n; j++)
    			ans = (ans + (f[1][j + 1][3] + f[i + 1][1][3] - f[i + 1][j + 1][3]) * g[i][j][0] % P) % P;
    	for (int i = 1; i <= n; i++)
    		for (int j = 1; j <= n; j++)
    			ans = (ans + P - g[i][j][1] * f[i - 1][j + 1][2] % P) % P;
    	printf("%d
    ",(ans + P) % P);
    }
    int main(){
    	n = read();
    	REP(i,n){
    		char c = getchar(); while (c != 'B' && c != 'W') c = getchar();
    		REP(j,n) {S[i][j] = c == 'B' ? 1 : 0; c = getchar();}
    	}
    	Pre();
    	work();
    	return 0;
    }
    
    
  • 相关阅读:
    epoll精髓 C++ 技术中心 C++博客
    【找茬】split string 力为的技术博客 C++博客
    不谈技术~蛇年,我回来了!
    不说技术~希望所有人都好好的
    DDD~充血模型和失血模型
    基础才是重中之重~何为原子化操作
    DDD~概念中的DDD
    策略模式
    windows句柄和消息技术
    观察者模式2(observer)
  • 原文地址:https://www.cnblogs.com/Mychael/p/9302028.html
Copyright © 2011-2022 走看看