Description
给你 (k) 个盒子,第 (i) 个盒子中有 (n_i) 个数,第 (j) 个数为 (x_{i,j})。现在让你进行 (k) 次操作,第 (i) 次操作要求从第 (i) 个盒子中取出一个元素(这个元素最开始就在该盒子中),放入任意一个你指定的盒子中,要求经过 (k) 次操作后
- 所有盒子元素个数和最开始相同;
- 所有盒子元素总和相等
询问是否存在一种操作方式使之满足,若存在,输出任意一种方案即可。
(1leq kleq 15,1leq n_ileq 5000,|x_{i,j}|leq 10^9)
Solution
由题,容易发现,对于任意一个盒子,会从其中拿出一个数,再从别处(或自己拿出的)添加一个数进来。
我们将数的拿出放入关系抽象成边,即从第 (i) 个盒子中拿出的数要放入 (j) 中,那么建边 (i ightarrow j)。
因为这张图要求每个节点入度和出度均为 (1),显然这张图只能是若干个无相交的环构成的。
现在,我们考虑所有的拿出放入关系:
假设我要从第 (i) 个盒子中拿出元素 (x),那么要使得这个盒子满足最终条件,应该被放入的元素为 (S-sum_i+x),其中 (S) 为最终每个盒子的元素总和,(sum_i) 表示第 (i) 个盒子最初的元素总和。
那么我们建边 (x ightarrow S-sum_i+x)(注意:此时图与之前建的图不同)。我们需要在这张图中找到所有满足下列条件的环:
- 环上每个元素属于不同盒子;
- 环上每种盒子只出现一次
用 (dfs) 找到这些环之后我们可以将盒子状压。具体地,令 (f_i) 表示状态 (i) 中所有的盒子构成的满足条件的图是否存在。转移枚举子集 (dp)。
若 (f_{2^k-1}=1) 即有解。注意另开数据记录转移关系,方便输出方案。
Code
#include <bits/stdc++.h>
#define ll long long
#define pb push_back
using namespace std;
const int N = 5000*15+5, B = (1<<15)+5;
map<ll, int> mp;
int k, n[20], id[N], kp[N], tot;
int bin[20], x[16][5005], f[B], ok[B], p[B], vis[N], s[N], top;
ll sum[20], S;
vector<int> to[N], re[B];
int l[20], r[20];
void dfs(int u, int st) {
if (vis[u]) {
int now = 0;
for (int i = top; i; i--) {
now |= bin[id[s[i]]-1];
if (u == s[i]) break;
}
if (!ok[now]) {
ok[now] = 1;
for (int i = top; i; i--) {
re[now].pb(s[i]);
if (u == s[i]) break;
}
}
return;
}
if (st&bin[id[u]-1]) return;
st |= bin[id[u]-1], vis[u] = 1, s[++top] = u;
for (auto v : to[u]) dfs(v, st);
vis[u] = 0, --top;
}
int main() {
bin[0] = 1;
for (int i = 1; i <= 15; i++) bin[i] = bin[i-1]<<1;
scanf("%d", &k);
for (int i = 1; i <= k; i++) {
scanf("%d", &n[i]);
for (int j = 1; j <= n[i]; j++)
scanf("%d", &x[i][j]), mp[x[i][j]] = ++tot,
kp[tot] = x[i][j], id[tot] = i, sum[i] += x[i][j];
S += sum[i];
}
if (S%k) {puts("No"); return 0; }
S /= k;
for (int i = 1; i <= k; i++)
for (int j = 1; j <= n[i]; j++)
if (mp.count(S-sum[i]+x[i][j])) to[mp[x[i][j]]].pb(mp[S-sum[i]+x[i][j]]);
for (int i = 1; i <= tot; i++)
dfs(i, 0);
f[0] = 1;
for (int i = 0; i < bin[k]; i++)
if (f[i]) {
int C = i^(bin[k]-1);
for (int j = C; j; j = (j-1)&C)
if (ok[j])
f[i|j] = 1, p[i|j] = i;
}
if (!f[bin[k]-1]) {puts("No"); return 0; }
int x = bin[k]-1;
while (x) {
int U = x-p[x];
for (auto i : re[U]) {
l[id[mp[S-sum[id[i]]+kp[i]]]] = S-sum[id[i]]+kp[i],
r[id[mp[S-sum[id[i]]+kp[i]]]] = id[i];
}
x = p[x];
}
puts("Yes");
for (int i = 1; i <= k; i++)
printf("%d %d
", l[i], r[i]);
return 0;
}