zoukankan      html  css  js  c++  java
  • [BZOJ 4361]isn

    Description

    题库链接

    给出一个长度为 (n) 的序列 (A) 。如果序列 (A) 不是非降的,你必须从中删去一个数,这一操作,直到 (A) 非降为止。求有多少种不同的操作方案,答案模 (10^9+7)

    (1leq nleq 2000)

    Solution

    显然对于 (A) 的一个长度为 (l) 的单调不降子序列 (B) 。删数而得到它的方案数为 ((n-l)!)

    但是这样会有不合法的情况,即长度为 (l+1) 的单调不降子序列被删。

    记长度为 (l) 的单调不降子序列个数为 (f_l) ,那么答案为:

    [sum_{l=1}^{n-1} f_lcdot(n-l)!-f_{l+1}cdot(n-l-1)!cdot(i+1)]

    那么剩下的就是求单调不降子序列的个数了。可以用树状数组来优化这个过程,复杂度为 (O(n^2log n)) ,为整个算法的瓶颈。

    Code

    //It is made by Awson on 2018.3.26
    #include <bits/stdc++.h>
    #define lowbit(x) ((x)&(-(x)))
    using namespace std;
    const int N = 2000, yzh = 1e9+7;
     
    int n, a[N+5], fac[N+5], b[N+5], f[N+5];
    struct bittree {
        int c[N+5];
        void add(int x, int val) {while (x <= n) (c[x] += val) %= yzh, x += lowbit(x); }
        int count(int x) {int ans = 0; while (x) (ans += c[x]) %= yzh, x -= lowbit(x); return ans; }
    }T[N+5];
     
    void work() {
        scanf("%d", &n);
        for (int i = 1; i <= n; i++) scanf("%d", &a[i]), b[i] = a[i];
        fac[0] = 1; for (int i = 1; i <= n; i++) fac[i] = 1ll*i*fac[i-1]%yzh;
        sort(b+1, b+n+1);
        for (int i = 1; i <= n; i++) a[i] = lower_bound(b+1, b+n+1, a[i])-b;
        T[0].add(1, 1);
        for (int i = 1; i <= n; i++)
        for (int l = i; l >= 1; l--) {
            int t = T[l-1].count(a[i]); (f[l] += t) %= yzh;
            T[l].add(a[i], t);
        }
        int ans = 0;
        for (int i = 1; i < n; i++) {
        (ans += 1ll*f[i]*fac[n-i]%yzh) %= yzh;
        (ans -= 1ll*f[i+1]*fac[n-i-1]%yzh*(i+1)%yzh) %= yzh;
        }
        printf("%d
    ", (ans+yzh)%yzh);
    }
    int main() {work(); return 0; }
  • 相关阅读:
    异步非阻塞
    jdbc简单入门
    网络编程
    多线程
    java方法
    java之面向对象
    java-多线程
    Java之反射机制
    使用C#完成冒泡排序
    TextEdit不能空验证设置
  • 原文地址:https://www.cnblogs.com/NaVi-Awson/p/8653637.html
Copyright © 2011-2022 走看看