zoukankan      html  css  js  c++  java
  • 树状数组初学

    什么是树状数组呢?

    树状数组(Binary Indexed Tree(B.I.T), Fenwick Tree)是一个查询和修改复杂度都为log(n)的数据结构 问问度娘吧

    在一个线性数组中 ,查询区间和的时间复杂度为O(n), 修改的时间复杂度为O(1)
    这是就会有些机智的孩纸想到了前缀和, 但这样一来,虽节省了查询区间和的时间, 但又使修改的时间复杂度变为了O(n)。

    具体实现如下图:
    在这里插入图片描述

    T1单点修改,区间查询

    思路

    通过树状数组保存并进行修改,利用前缀和求和

    #include <cstdio>
    const int maxn = 1000005;
    long long n, q;
    long long a[maxn], BIT[maxn];
    int Lowbit(long long x){
    	return (x & (-x));
    }
    void Update(long long k, long long x){
    	a[k] += x;
    	for(long long i = k; i <= n; i += Lowbit(i)){
    		BIT[i] += x;
    	}
    }
    long long Sum(long long x){
    	long long ans = 0;
    	for(long long i = x; i > 0; i -= Lowbit(i)){
    		ans += BIT[i];
    	}
    	return ans;
    }
    
    int main() {
    	scanf("%lld %lld", &n, &q);
    	for(int i = 1; i <= n; i ++){
    		scanf("%lld", &a[i]);
    		Update(i, a[i]);
    	}
    	for(int i = 1; i <= q; i ++){
    		long long x, y, z;
    		scanf("%lld %lld %lld", &x, &y, &z);
    		if(x == 1){
    			Update(y, z);
    		}
    		else{
    			printf("%lld
    ", Sum(z) - Sum(y - 1));
    		} 
    	}
    	return 0;
    } 
    

    T2 区间修改,单点查询

    思路

    通过差分组成树状数组,用 sum 求取单点,用 update 更改区间

    #include <cstdio>
    const int maxn = 1000005;
    long long n, m;
    long long a[maxn], BIT[maxn];
    long long Lowbit(long long x){
    	return (x & (-x));
    }
    void Update(long long k, long long x){
    	for(long long  i = k; i <= n; i += Lowbit(i)){
    		BIT[i] += x;
    	}
    }     
    long long Sum(long long x){
    	long long ans = 0;
    	for(long long i = x; i > 0; i -= Lowbit(i)){
    		ans += BIT[i];
    	}
    	return ans;
    }
    int main() {
    	scanf("%lld %lld", &n, &m);
    	for(long long i = 1; i <= n; i ++){
    		scanf("%lld", &a[i]);
    		Update(i, a[i] - a[i - 1]);
    	}
    	for(long long i = 1; i <= m; i ++){
    		long long x, l, r, y;
    		scanf("%lld", &x);
    		if(x == 1){
    			scanf("%lld %lld %lld", &l, &r, &y);
    			Update(l, y);
    			Update(r + 1, -y);
    		}
    		else{
    			scanf("%lld", &y);
    			printf("%lld
    ", Sum(y));
    		}
    	}
    	return 0;
    }
    

    T3 区间修改,区间查询

    思路

    运用差分求区间修改,通过前缀和查询

    推导过程

    sum(a[i])
    = a[1] + a[2] + a[3] + ......+ a[i - 1] + a[i]
    = p[1] + (p[1] + p[2]) +......+(p[1] + p[2] +.....+p[i])
    = n * p[1] + (n - 1) * p[2] + .....+ 2 * p[i - 1] + p[i]
    = n * (p[1] + p[2] + ...... + p[i]) - (0 * p[1] + 1 * p[2] + .......+(n -1) * p[i])
    减号左边 为 BIT1 右边为 BIT2

    #include <cstdio>
    const int maxn = 1e6 + 5;
    
    int m, n;
    int a[maxn];
    long long BIT1[maxn], BIT2[maxn];
    int Lowbit(int x){
    	return x & (-x);
    }
    void Update(int k, int x){
    	for(int i = k; i <= n; i += Lowbit(i)){
    		BIT1[i] += x;
    		BIT2[i] += (long long)(k - 1) * x;
    	}
    }
    long long Sum(int x){
    	long long sum = 0;
    	for(int i = x; i > 0; i -= Lowbit(i)){
    		sum += (BIT1[i] * x - BIT2[i]);
    	}
    	return sum; 
    }
    int main() {
    	scanf("%d %d", &n, &m);
    	for(int i = 1; i <= n; i ++){
    		scanf("%d", &a[i]);
    		Update(i, a[i] - a[i - 1]);
    	}
    	for(int i = 1; i <= m; i ++){
    		int flag;
    		scanf("%d", &flag);
    		if(flag == 1){
    			int l, r, x;
    			scanf("%d %d %d", &l, &r, &x);
    			Update(l, x);
    			Update(r + 1, -x);
    		}
    		else{
    			int l, r;
    			scanf("%d %d", &l, &r);
    			printf("%lld
    ", Sum(r) - Sum(l - 1));
    		}
    	}
    	return 0;
    } 
    

    T4 求逆序对数

    思路

    用离散化

    #include <cstdio>
    #include <algorithm>
    const int maxn = 1005;
    using namespace std;
    
    int n;
    int lsh[maxn], a[maxn], BIT[maxn];
    int lowbit(int x){
    	return (x & -x);
    }
    
    void Update(int k, int x){
    	for(int i = k; i <= n; i += lowbit(i)){
    		BIT[i] += x; 
    	}
    }
    int sum(int x){
    	int ans = 0;
    	for(int i = x; i > 0; i -= lowbit(i)){
    		ans += BIT[i];
    	}
    	return ans;
    }
    int main() {
    	scanf("%d", &n);
    	for(int i = 1; i <= n; i ++){
    		scanf("%d", &a[i]);
    		lsh[i] = a[i];
    	}
    	sort(lsh + 1, lsh + 1 + n);
    	int cnt = unique(lsh + 1, lsh + n + 1) - lsh - 1;
    	for(int i = 1; i <= n; i ++){
    		a[i] = lower_bound(lsh + 1, lsh + cnt + 1, a[i]) - lsh;
    	}
    	long long ans = 0;
    	for(int i = 1; i <= n; i ++){
    		Update(a[i], 1);
    		ans += max(i - sum(a[i]), 0);
    	}
    	printf("%lld", ans);
    	return 0;
    } 
    
    夜空中最亮的星,请照亮我前行
  • 相关阅读:
    todo---HttpClient,httpUrlConnection
    todo---callback
    todo-braintree-java
    todo--com.paypal.sdk
    todo--OkHttp基本使用
    @RequestBody 和@ResponseBody 注解详解
    常用Jar包下载
    SpringMVC 使用JSR-303进行校验 @Valid
    SpringMVC 之 表单标签
    SpringMVC 自定义类型转换器
  • 原文地址:https://www.cnblogs.com/Nefelibata/p/13909589.html
Copyright © 2011-2022 走看看