Problem Description
The inversion number of a given number sequence a1, a2, …, an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, …, an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, …, an-1, an (where m = 0 - the initial seqence)
a2, a3, …, an, a1 (where m = 1)
a3, a4, …, an, a1, a2 (where m = 2)
…
an, a1, a2, …, an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10
1 3 6 9 0 8 5 7 4 2
Sample Output
16
题意:
题意:0~n-1且不一定有序排列的数字串,不断的将第一个数字放到数字串的最后,可以得到n个不同的数字串。每一个数字串都有一个逆序数,求n个数字串中最小的逆序数。
思路:
很简单的线段树,树状数组也可以做,把数拿下来每次往线段树里面查,或者往一个新数组里面插,就xjb些就行了
做这道题的时候初识线段树,竟然敲了一大段代码手写了一个for循环,坑爹的是竟然 842Ms 水过了
后来for循环写了一下 102Ms就过了 —– 菜鸡如我
仔细学习了一下线段树之后理解了线段树的区间查询再写了一次 42 Ms 过了 在这里写一下心得体会,
线段树的区间查询操作之所以是O(lg(n))的复杂度,完全是因为分治,每次都查询一半,如果每一个都遍历一次的话,
跟for循环就一模一样了,而且百度学习线段树的时候还学习到了懒标记的使用,也是线段树的一大重点,能够很好的降低时间复杂度,值得学习
———————————————————-AC code—————————————
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
using namespace std;
const int maxn = 6000+5;
struct segtree{
int l,r;
int sum;
}ss[maxn<<2];
int v[maxn];
void build(int l,int r,int rt ) {
ss[rt].l = l,ss[rt].r = r;
if ( ss[rt].l == ss[rt].r ) { ss[rt].sum = 0; return;}
int mid = (l+r)>>1;
build(lson); build(rson);
ss[rt].sum = 0;
}
void update(int l,int r,int rt){
if ( ss[rt].l == ss[rt].r ) { ss[rt].sum++; return; }
int mid = (ss[rt].l+ss[rt].r)>>1;
if ( mid >= r ) update(l,r,rt<<1);
else update(l,r,rt<<1|1);
ss[rt].sum = ss[rt<<1].sum + ss[rt<<1|1].sum;
}
int query(int l,int r,int rt){
if ( ss[rt].l == l && ss[rt].r == r ){
return ss[rt].sum;
}
int mid = (ss[rt].l+ss[rt].r)>>1; int s = 0;
if ( mid >= r ) {
s += query(l,r,rt<<1);
} else if ( mid < l ) {
s += query(l,r,rt<<1|1);
} else {
s += query(l,mid,rt<<1);
s += query(mid+1,r,rt<<1|1);
}
return s;
}
int main(){
int t;
while(~scanf("%d",&t)){
build(1,t,1);
int sum = 0;
for (int i = 1;i<=t;i++) {
scanf("%d",&v[i]); v[i]++;
if ( v[i] != t )
sum += query(v[i]+1,t,1);
update(v[i],v[i],1);
}
int minn = sum;
for (int i = 1;i<=t;i++){
sum = sum + t - 2*v[i] + 1;
minn = min(minn,sum);
}
printf("%d
",minn);
}
return 0;
}
其实树状数组也可以实现
——————————————- AC code ————————————————-
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define debug puts("ok!");
using namespace std;
//typedef long long ll;
const int maxn = 50000+5;
int bit[maxn],t;
int lowbit(int pos){
return (pos & (-pos));
}
int query(int pos){
int ret = 0;
while(pos > 0){
ret += bit[pos];
pos -= lowbit(pos);
}
return ret;
}
void update(int pos)
{
while(pos<=t){
bit[pos] ++;
pos += lowbit(pos);
}
}
int v[maxn];
int main(){
while(cin>>t){
int sum = 0;
memset(bit,0,sizeof(bit));
for (int i = 1;i<=t;i++) {
scanf("%d",&v[i]); v[i]++;
sum += query(t) - query(v[i]);
//printf("%d
",query(t));
update(v[i]);
}
//printf("%d
",sum);
int minn = sum;
for (int i = 1;i<=t;i++){
sum = sum + t - 2*v[i] + 1;
minn = min(minn,sum);
}
printf("%d
",minn);
}
return 0;
}