红黑树插入 C语言实现
推荐一个红黑树可视化网站: https://www.cs.usfca.edu/~galles/visualization/RedBlack.html
红黑树插入,按照 排序二叉树规则插入即可,只不过插入后需要根据周边的节点来判断是否满足红黑树平衡,若不满足,需要进行 染色 或者 旋转修复。
博客后面提供插入完整代码
1. 什么是红黑树
红黑树是一种自平衡二叉查找树,巴拉巴拉--- , 请注意前提,是一颗二叉查找树。
关于二叉查找树: https://baike.baidu.com/item/二叉排序树/10905079?fromtitle=二叉查找树&fromid=7077965&fr=aladdin
2. 红黑树概念
- 每个节点要么是红色,要么是黑色
- 根节点和叶节点是黑色的(红黑树的叶节点是NULL LEAF,默认NULL节点为黑色)
- 如果一个节点是红色,那么它的孩子是黑色的(不允许连续2个红节点,但是允许2个连续的黑节点)
- 任意节点到叶节点的树链中包含相同数量的黑节点
红黑树图示
3. 红黑树插入后判断是否平衡以及何种操作
1. 判断是否平衡
-
若插入节点父节点为黑节点,则为平衡,无需修复。
-
若插入节点父节点为红色,叔叔节点为红色,则需要进行染色修复。
-
若插入节点父节点为红色,叔叔节点为黑色,则需要进行旋转。
2. 图示
ps: 黄色节点为 新插入节点,一般默认新插入节点颜色为红色!
1. 被插入节点父节点为黑色,无需进行修复
2. 被插入节点父节点为红色,叔叔节点为红色,需要进行染色修复
3. 被插入节点父节点为红色,叔叔节点为黑色(红黑树叶子节点都为黑色),需要进行旋转操作
3. 测试代码实现
先看结论,再看核心和具体函数代码
3.1 插入是否需要修复结论
- 图示第一种情况
代码
int main() {
TreeNode *root_160 = (TreeNode *)malloc(sizeof(TreeNode));
TreeNode *node_85 = (TreeNode *)malloc(sizeof(TreeNode));
TreeNode *node_240 = (TreeNode *)malloc(sizeof(TreeNode));
TreeNode *node_260 = (TreeNode *)malloc(sizeof(TreeNode));
root_160->data = 160; root_160->color = BLACK;
node_85->data = 85; node_85->color = BLACK;
node_240->data = 240; node_240->color = BLACK;
node_260->data = 260; node_260->color = RED;
root_160->left = node_85;
root_160->right = node_240;
node_240->right = node_260;
InsertFixup1(&root_160,node_260);
return 0;
}
执行结果
# gcc RedBlackTreeInsert.c -w -g
# ./a.out
插入数据:260
无需进行修复
#
- 图示第二种情况
代码
int main() {
TreeNode *root_160 = (TreeNode *)malloc(sizeof(TreeNode));
TreeNode *node_85 = (TreeNode *)malloc(sizeof(TreeNode));
TreeNode *node_240 = (TreeNode *)malloc(sizeof(TreeNode));
TreeNode *node_260 = (TreeNode *)malloc(sizeof(TreeNode));
root_160->data = 160; root_160->color = BLACK;
node_85->data = 85; node_85->color = RED;
node_240->data = 240; node_240->color = RED;
node_260->data = 260; node_260->color = RED;
root_160->left = node_85;
root_160->right = node_240;
node_240->right = node_260;
InsertFixup1(&root_160,node_260);
return 0;
}
执行结果
# gcc RedBlackTreeInsert.c -w -g
# ./a.out
插入数据:260
需要进行染色修复
#
- 图示第三种情况
代码
int main() {
TreeNode *root_160 = (TreeNode *)malloc(sizeof(TreeNode));
TreeNode *node_85 = (TreeNode *)malloc(sizeof(TreeNode));
TreeNode *node_240 = (TreeNode *)malloc(sizeof(TreeNode));
TreeNode *node_260 = (TreeNode *)malloc(sizeof(TreeNode));
TreeNode *node_250 = (TreeNode *)malloc(sizeof(TreeNode));
root_160->data = 160; root_160->color = BLACK;
node_85->data = 85; node_85->color = BLACK;
node_240->data = 240; node_240->color = BLACK;
node_260->data = 260; node_260->color = RED;
node_250->data = 250; node_250->color = RED;
root_160->left = node_85;
root_160->right = node_240;
node_240->right = node_260;
node_260->left = node_250;
InsertFixup1(&root_160,node_250);
return 0;
}
执行结果
# ./a.out
插入数据:250
需要进行旋转修复
#
3.2 核心代码
// 检测红黑树插入 是否需要修复
if ((parent->color == RED) && (uncleColor == RED)) {
// 父亲节点为红色,叔叔节点为红色,需要进行染色修复
printf("需要进行染色修复
");
} else if((parent->color == RED) && uncleColor == BLACK) {
// 父节点为红色,叔叔节点为黑色,则需要进行旋转
printf("需要进行旋转修复
");
} else {
// 无需进行修复
printf("无需进行修复
");
}
3.3 具体函数实现
宏定义/结构体
# include <stdio.h>
# include <stdlib.h>
# include <stdbool.h>
# define RED 1
# define BLACK 0
typedef struct {
int data; // 数据节点
struct TreeNode *left; // 左子树
struct TreeNode *right; // 右字树
int color; // 二叉树颜色,1: 红色 0:黑色
} TreeNode , *PTreeNode;
具体函数
PTreeNode InsertFixup1(PTreeNode *root,PTreeNode newNode) {
printf("插入数据:%d
",newNode->data);
TreeNode *parent = NULL; // 父亲节点
TreeNode *grandParent = NULL; // 爷爷节点
TreeNode *greatGrandParent = NULL; // 祖爷爷节点
TreeNode *uncle = NULL; // 叔叔节点
int uncleColor = 0; // 叔叔节点颜色,默认为黑色
// 寻找节点 父亲/爷爷祖爷爷节点
TreeNode *tmp = (*root);
while (tmp != NULL) {
if (newNode->data == tmp->data) {
break;
}
greatGrandParent = grandParent;
grandParent = parent;
parent = tmp;
(newNode->data > tmp->data) ? (tmp = tmp->right) : (tmp = tmp->left);
}
// 当前节点是根节点,染成黑色
if (newNode == (*root)) {
printf("根节点,需要进行染色操作
");
}
// 只有2层就退出去
if (grandParent == NULL) return;
// 获取叔叔节点
(parent == grandParent->left) ? (uncle = grandParent->right) : (uncle = grandParent->left);
// 获取叔叔节点颜色
if (uncle != NULL) uncleColor = uncle->color;
// 检测红黑树插入 是否需要修复
if ((parent->color == RED) && (uncleColor == RED)) {
// 父亲节点为红色,叔叔节点为红色,需要进行染色修复
printf("需要进行染色修复
");
} else if((parent->color == RED) && uncleColor == BLACK) {
// 父节点为红色,叔叔节点为黑色,则需要进行旋转
printf("需要进行旋转修复
");
} else {
// 无需进行修复
printf("无需进行修复
");
}
}
4. 红黑树插入染色修复
染色修复
- 将父亲节点 和 叔叔节点 染成黑色。
- 将爷爷节点染成红色。
- 将爷爷节点赋值给当前节点 ,再次判断是否需要染色处理。
4.1 图示
如上图所示,新插入节点为 260(当前节点) , 父亲节点为 240, 爷爷节点为 160, 叔叔节点为 85
4.2 染色处理
将 父亲节点 和 叔叔节点染成黑色,爷爷节点染成红色,然后将 当前节点 挪至 爷爷几点,再次判断是否需要染色处理。
如上图所示,将 父亲节点(240) 和 叔叔节点 (85) 染成黑色后, 将爷爷节点(160)染成红色后,将当前节点 挪至爷爷节点(160为红色节点,且当前节点指向160),继续获取节点。
4.3 代码实现
核心代码
// 染色操作
if ((parent->color == RED) && (uncleColor == RED)) {
parent->color = BLACK;
uncle->color = BLACK;
grandParent->color = RED;
newNode = grandParent;
continue;
}
染色完整代码
宏定义/结构体
# include <stdio.h>
# include <stdlib.h>
# include <stdbool.h>
# define RED 1
# define BLACK 0
typedef struct {
int data; // 数据节点
struct TreeNode *left; // 左子树
struct TreeNode *right; // 右字树
int color; // 二叉树颜色,1: 红色 0:黑色
} TreeNode , *PTreeNode;
插入函数
PTreeNode InsertFixup1(PTreeNode *root,PTreeNode newNode) {
printf("插入数据:%d
",newNode->data);
TreeNode *parent = NULL; // 父亲节点
TreeNode *grandParent = NULL; // 爷爷节点
TreeNode *greatGrandParent = NULL; // 祖爷爷节点
TreeNode *uncle = NULL; // 叔叔节点
int uncleColor = BLACK; // 叔叔节点颜色,默认为黑色
while (true) {
parent = grandParent = greatGrandParent = uncle = NULL;
uncleColor = BLACK;
// 寻找节点 父亲/爷爷祖爷爷节点
TreeNode *tmp = (*root);
while (tmp != NULL) {
if (newNode->data == tmp->data) {
break;
}
greatGrandParent = grandParent;
grandParent = parent;
parent = tmp;
(newNode->data > tmp->data) ? (tmp = tmp->right) : (tmp = tmp->left);
}
// 当前节点是根节点,染成黑色
if (newNode == (*root)) {
printf("根节点,需要进行染色操作
");
}
if (grandParent == NULL) return;
// 获取叔叔节点
(parent == grandParent->left) ? (uncle = grandParent->right) : (uncle = grandParent->left);
// 获取叔叔节点颜色
if (uncle != NULL) uncleColor = uncle->color;
if ((parent->color == RED) && (uncleColor == RED)) {
// 父亲节点为红色,叔叔节点为红色,需要进行染色修复
printf("需要进行染色修复
");
parent->color = BLACK;
uncle->color = BLACK;
grandParent->color = RED;
newNode = grandParent;
continue;
} else if((parent->color == RED) && uncleColor == BLACK) {
// 父节点为红色,叔叔节点为黑色,则需要进行旋转
printf("需要进行旋转修复
");
break;
} else {
// 无需进行修复
printf("无需进行修复
");
break;
}
}
}
主函数/遍历函数
// 前序遍历
void Print1(TreeNode *root) {
if (NULL == root) return;
printf("[颜色:%s 数据:%d] ",(root->color == RED) ? ("红"):("黑") ,root->data);
Print1(root->left);
Print1(root->right);
}
int main() {
TreeNode *root_160 = (TreeNode *)malloc(sizeof(TreeNode));
TreeNode *node_85 = (TreeNode *)malloc(sizeof(TreeNode));
TreeNode *node_240 = (TreeNode *)malloc(sizeof(TreeNode));
TreeNode *node_260 = (TreeNode *)malloc(sizeof(TreeNode));
TreeNode *node_250 = (TreeNode *)malloc(sizeof(TreeNode));
root_160->data = 160; root_160->color = BLACK;
node_85->data = 85; node_85->color = 1;
node_240->data = 240; node_240->color = 1;
node_260->data = 260; node_260->color = RED;
root_160->left = node_85;
root_160->right = node_240;
node_240->right = node_260;
InsertFixup1(&root_160,node_260);
Print1(root_160);
printf("
");
return 0;
}
执行结果
# ./a.out
插入数据:260
需要进行染色修复
根节点,需要进行染色操作
[颜色:红 数据:160] [颜色:黑 数据:85] [颜色:黑 数据:240] [颜色:红 数据:260]
#
5. 红黑树插入旋转修复
旋转修复
父亲节点为红色,叔叔节点为黑色,则需要进行旋转修复
而旋转修复又分为四种情况: 左左/左右/右左/右右
5.1 图示
黄色节点为 新插入节点 ,重点关注蓝色框框的树
左左情况
左右情况
右左情况
右右情况
5.2 判断方向
若新插入节点的父亲节点在爷爷节点的左边,且新插入节点在父亲节点的左边,则为 左左情况
若新插入节点的父亲节点在爷爷节点的左边,且新插入节点在父亲节点的右边,则为 左右情况
若新插入节点的父亲节点在爷爷节点的右边,且新插入节点在父亲节点的左边,则为 右左情况
若新插入节点的父亲节点在爷爷节点的右边,且新插入节点在父亲节点的右边,则为 右右情况
代码实现
if ((parent->color == RED) && uncleColor == BLACK) {
if ((parent == grandParent->left) && (newNode == parent->left)) {
// 左左情况
} else if ((parent == grandParent->left) && (newNode == parent->right)) {
// 左右情况
} else if ((parent == grandParent->right) && (newNode == parent->left)) {
// 右左情况
} else if ((parent == grandParent->right) && (newNode == parent->right)) {
// 右右情况
}
}
5.3 旋转图示
左左情况
进行右旋操作
染色操作
将父亲节点(80)染成黑色,爷爷节点(85)染成红色, 当前节点(60)染成红色
左右情况
先进行左旋,将会变为【左左】情况一致
右左情况
先进行右旋,将会变为【右右】情况一致
上图变得和 即将讲述的 【右右】情况类似了
右右情况
进行左旋操作
进行染色处理
将父亲节点(90)染成黑色,将爷爷节点(85)染成红色,当前节点(100)染成红色
5.4 旋转代码实现
左左旋转
// 左左
if ((parent == grandParent->left) && (newNode == parent->left)) {
grandParent->left = NULL;
TreeNode *oldParentRight = parent->right;
parent->right = grandParent;
grandParent->left = oldParentRight;
if ((*root) == grandParent) {
(*root) = parent;
} else {
(greatGrandParent->left == grandParent) ? (greatGrandParent->left = parent) : (greatGrandParent->right = parent);
}
// 染色
newNode->color = RED;
grandParent->color = RED;
parent->color = BLACK;
//continue;
break;
}
左右旋转
// 左右
if ((parent == grandParent->left) && (newNode == parent->right)) {
grandParent->left = newNode;
TreeNode *newNodeLeft = newNode->left;
newNode->left = parent;
parent->right = newNodeLeft;
TreeNode *newNodeRight = newNode->right;
newNode->right = grandParent;
grandParent->left = newNodeRight;
//newNode->left = parent;
// 若要旋转的树是根节点
if ((*root) == grandParent) {
(*root) = newNode;
} else {
// 要旋转的树非根节点
(greatGrandParent->left == grandParent) ? (greatGrandParent->left = newNode) : (greatGrandParent->right = newNode);
}
parent->color = RED;
grandParent->color = RED;
newNode->color = BLACK;
//continue;
break;
}
右左旋转
// 右左
if ((parent == grandParent->right) && (newNode == parent->left)) {
parent->left = NULL;
TreeNode *newNodeRight = newNode->right;
newNode->right = parent;
parent->left = newNodeRight;
grandParent->right = newNode;
TreeNode *newNodeLeft = newNode->left;
newNode->left = grandParent;
grandParent->right = newNodeLeft;
// 要旋转的树是根节点
if ((*root) == grandParent) {
(*root) = newNode;
} else {
// 要旋转的树是非根节点
(greatGrandParent->left == grandParent) ? (greatGrandParent->left = newNode) : (greatGrandParent->right = newNode);
}
// 染色
newNode->color = BLACK;
grandParent->color = RED;
parent->color = RED;
//continue;
break;
}
右右旋转
if ((parent == grandParent->right) && (newNode == parent->right)) {
grandParent->right = NULL;
TreeNode *oldParentLeft = parent->left;
parent->left = grandParent;
grandParent->right = oldParentLeft;
// 要旋转的树是根节点
if ((*root) == grandParent) {
(*root) = parent;
} else {
// 要旋转的树是非根节点
(greatGrandParent->left == grandParent) ? (greatGrandParent->left = parent) : (greatGrandParent->right = parent);
}
// 染色
grandParent->color = RED;
newNode->color = RED;
parent->color = BLACK;
//continue;
break;
}
整合代码插入修复函数
PTreeNode InsertFixup(PTreeNode *root,PTreeNode newNode) {
TreeNode *parent = NULL; // 父亲节点
TreeNode *grandParent = NULL; // 爷爷节点
TreeNode *greatGrandParent = NULL; // 祖爷爷节点
TreeNode *uncle = NULL; // 叔叔节点
int uncleColor = BLACK; // 叔叔节点颜色,默认为黑色
while (true) {
parent = grandParent = greatGrandParent = uncle = NULL;
uncleColor = BLACK;
// 寻找节点 父亲/爷爷祖爷爷节点
TreeNode *tmp = (*root);
while (tmp != NULL) {
if (newNode->data == tmp->data) {
break;
}
greatGrandParent = grandParent;
grandParent = parent;
parent = tmp;
(newNode->data > tmp->data) ? (tmp = tmp->right) : (tmp = tmp->left);
}
// 当前节点是根节点,染成黑色
if (newNode == (*root)) {
printf("根节点,需要进行染色操作
");
(*root)->color = BLACK;
}
if (grandParent == NULL) return;
// 获取叔叔节点
(parent == grandParent->left) ? (uncle = grandParent->right) : (uncle = grandParent->left);
// 获取叔叔节点颜色
if (uncle != NULL) uncleColor = uncle->color;
if ((parent->color == RED) && (uncleColor == RED)) {
// 父亲节点为红色,叔叔节点为红色,需要进行染色修复
printf("需要进行染色修复
");
parent->color = BLACK;
uncle->color = BLACK;
grandParent->color = RED;
newNode = grandParent;
continue;
} else if((parent->color == RED) && uncleColor == BLACK) {
// 父节点为红色,叔叔节点为黑色,则需要进行旋转
printf("需要进行旋转修复
");
// 左左
if ((parent == grandParent->left) && (newNode == parent->left)) {
grandParent->left = NULL;
TreeNode *oldParentRight = parent->right;
parent->right = grandParent;
grandParent->left = oldParentRight;
if ((*root) == grandParent) {
(*root) = parent;
} else {
(greatGrandParent->left == grandParent) ? (greatGrandParent->left = parent) : (greatGrandParent->right = parent);
}
// 染色
newNode->color = RED;
grandParent->color = RED;
parent->color = BLACK;
//continue;
break;
// 左右
} else if ((parent == grandParent->left) && (newNode == parent->right)) {
grandParent->left = newNode;
TreeNode *newNodeLeft = newNode->left;
newNode->left = parent;
parent->right = newNodeLeft;
TreeNode *newNodeRight = newNode->right;
newNode->right = grandParent;
grandParent->left = newNodeRight;
newNode->left = parent;
// 若要旋转的树是根节点
if ((*root) == grandParent) {
(*root) = newNode;
} else {
// 要旋转的树非根节点
(greatGrandParent->left == grandParent) ? (greatGrandParent->left = newNode) : (greatGrandParent->right = newNode);
}
parent->color = RED;
grandParent->color = RED;
newNode->color = BLACK;
//continue;
break;
// 右左
} else if ((parent == grandParent->right) && (newNode == parent->left)) {
parent->left = NULL;
TreeNode *newNodeRight = newNode->right;
newNode->right = parent;
parent->left = newNodeRight;
grandParent->right = newNode;
TreeNode *newNodeLeft = newNode->left;
newNode->left = grandParent;
grandParent->right = newNodeLeft;
// 要旋转的树是根节点
if ((*root) == grandParent) {
(*root) = newNode;
} else {
// 要旋转的树是非根节点
(greatGrandParent->left == grandParent) ? (greatGrandParent->left = newNode) : (greatGrandParent->right = newNode);
}
// 染色
newNode->color = BLACK;
grandParent->color = RED;
parent->color = RED;
//continue;
break;
// 右右
} else if ((parent == grandParent->right) && (newNode == parent->right)) {
grandParent->right = NULL;
TreeNode *oldParentLeft = parent->left;
parent->left = grandParent;
grandParent->right = oldParentLeft;
// 要旋转的树是根节点
if ((*root) == grandParent) {
(*root) = parent;
} else {
// 要旋转的树是非根节点
(greatGrandParent->left == grandParent) ? (greatGrandParent->left = parent) : (greatGrandParent->right = parent);
}
// 染色
grandParent->color = RED;
newNode->color = RED;
parent->color = BLACK;
//continue;
break;
}
} else {
// 无需进行修复
printf("无需进行修复
");
break;
}
}
return (*root);
}
6. 插入全部代码
引入 搜索二叉树 插入代码
# include <stdio.h>
# include <stdlib.h>
# include <stdbool.h>
# define RED 1
# define BLACK 0
typedef struct {
int data; // 数据节点
struct TreeNode *left; // 左子树
struct TreeNode *right; // 右字树
int color; // 二叉树颜色,1: 红色 0:黑色
} TreeNode , *PTreeNode;
PTreeNode InsertFixup(PTreeNode *root,PTreeNode newNode) {
TreeNode *parent = NULL; // 父亲节点
TreeNode *grandParent = NULL; // 爷爷节点
TreeNode *greatGrandParent = NULL; // 祖爷爷节点
TreeNode *uncle = NULL; // 叔叔节点
int uncleColor = BLACK; // 叔叔节点颜色,默认为黑色
while (true) {
parent = grandParent = greatGrandParent = uncle = NULL;
uncleColor = BLACK;
// 寻找节点 父亲/爷爷祖爷爷节点
TreeNode *tmp = (*root);
while (tmp != NULL) {
if (newNode->data == tmp->data) {
break;
}
greatGrandParent = grandParent;
grandParent = parent;
parent = tmp;
(newNode->data > tmp->data) ? (tmp = tmp->right) : (tmp = tmp->left);
}
// 当前节点是根节点,染成黑色
if (newNode == (*root)) {
printf("根节点,需要进行染色操作
");
(*root)->color = BLACK;
}
if (grandParent == NULL) return;
// 获取叔叔节点
(parent == grandParent->left) ? (uncle = grandParent->right) : (uncle = grandParent->left);
// 获取叔叔节点颜色
if (uncle != NULL) uncleColor = uncle->color;
if ((parent->color == RED) && (uncleColor == RED)) {
// 父亲节点为红色,叔叔节点为红色,需要进行染色修复
printf("需要进行染色修复
");
parent->color = BLACK;
uncle->color = BLACK;
grandParent->color = RED;
newNode = grandParent;
continue;
} else if((parent->color == RED) && uncleColor == BLACK) {
// 父节点为红色,叔叔节点为黑色,则需要进行旋转
printf("需要进行旋转修复
");
// 左左
if ((parent == grandParent->left) && (newNode == parent->left)) {
grandParent->left = NULL;
TreeNode *oldParentRight = parent->right;
parent->right = grandParent;
grandParent->left = oldParentRight;
if ((*root) == grandParent) {
(*root) = parent;
} else {
(greatGrandParent->left == grandParent) ? (greatGrandParent->left = parent) : (greatGrandParent->right = parent);
}
// 染色
newNode->color = RED;
grandParent->color = RED;
parent->color = BLACK;
//continue;
break;
// 左右
} else if ((parent == grandParent->left) && (newNode == parent->right)) {
grandParent->left = newNode;
TreeNode *newNodeLeft = newNode->left;
newNode->left = parent;
parent->right = newNodeLeft;
TreeNode *newNodeRight = newNode->right;
newNode->right = grandParent;
grandParent->left = newNodeRight;
newNode->left = parent;
// 若要旋转的树是根节点
if ((*root) == grandParent) {
(*root) = newNode;
} else {
// 要旋转的树非根节点
(greatGrandParent->left == grandParent) ? (greatGrandParent->left = newNode) : (greatGrandParent->right = newNode);
}
parent->color = RED;
grandParent->color = RED;
newNode->color = BLACK;
//continue;
break;
// 右左
} else if ((parent == grandParent->right) && (newNode == parent->left)) {
parent->left = NULL;
TreeNode *newNodeRight = newNode->right;
newNode->right = parent;
parent->left = newNodeRight;
grandParent->right = newNode;
TreeNode *newNodeLeft = newNode->left;
newNode->left = grandParent;
grandParent->right = newNodeLeft;
// 要旋转的树是根节点
if ((*root) == grandParent) {
(*root) = newNode;
} else {
// 要旋转的树是非根节点
(greatGrandParent->left == grandParent) ? (greatGrandParent->left = newNode) : (greatGrandParent->right = newNode);
}
// 染色
newNode->color = BLACK;
grandParent->color = RED;
parent->color = RED;
//continue;
break;
// 右右
} else if ((parent == grandParent->right) && (newNode == parent->right)) {
grandParent->right = NULL;
TreeNode *oldParentLeft = parent->left;
parent->left = grandParent;
grandParent->right = oldParentLeft;
// 要旋转的树是根节点
if ((*root) == grandParent) {
(*root) = parent;
} else {
// 要旋转的树是非根节点
(greatGrandParent->left == grandParent) ? (greatGrandParent->left = parent) : (greatGrandParent->right = parent);
}
// 染色
grandParent->color = RED;
newNode->color = RED;
parent->color = BLACK;
//continue;
break;
}
} else {
// 无需进行修复
printf("无需进行修复
");
break;
}
}
return (*root);
}
PTreeNode Insert(PTreeNode *root,int data) {
printf("插入数据: %d
",data);
TreeNode *newNode = (TreeNode *)malloc(sizeof(TreeNode));
newNode->data = data;
newNode->color = RED; // 新增节点染成红色
TreeNode *parent = NULL;
TreeNode *grandParent = NULL;
if (NULL == (*root)) {
//printf("插入根节点
");
newNode->color = BLACK; // 将头结点染成黑色
return newNode;
} else {
TreeNode *tmp = (*root);
while (tmp != NULL) {
//printf("插入查找值: %d
",tmp->data);
grandParent = parent;
parent = tmp;
if (data > tmp->data){
tmp = tmp->right;
} else if (data < tmp->data){
tmp = tmp->left;
} else {
printf("%d 该值已经存在
",data);
}
}
if (data > parent->data) {
parent->right = newNode;
//printf("parent data:%d newNode data:%d
",parent->data,newNode->data);
} else {
parent->left = newNode;
}
}
// 如果插入父节点是黑色,则保持不变
if (parent->color == BLACK) return (*root);
// 进行插入修复
return InsertFixup(root,newNode);
}
// 中序遍历
void Print2(TreeNode *root) {
if (NULL == root) return;
Print2(root->left);
printf("[颜色:%s 数据:%d] ",(root->color == RED) ? ("红"):("黑") ,root->data);
Print2(root->right);
}
// 前序遍历
void Print1(TreeNode *root) {
if (NULL == root) return;
printf("[颜色:%s 数据:%d] ",(root->color == RED) ? ("红"):("黑") ,root->data);
Print1(root->left);
Print1(root->right);
}
int main() {
TreeNode *root = NULL;
int num[] = {10,6,11,4,8,20,19,26,17,23,35,40,55,32,231};
int i;
for (i=0;i<sizeof(num)/sizeof(int);i++) {
root = Insert(&root,num[i]);
}
printf("
");
Print1(root);
printf("
");
return 0;
}
执行结果
# gcc RedBlackTreeInsert.c -w -g
# ./a.out
插入数据: 10
插入数据: 6
插入数据: 11
插入数据: 4
需要进行染色修复
根节点,需要进行染色操作
插入数据: 8
插入数据: 20
插入数据: 19
需要进行旋转修复
插入数据: 26
需要进行染色修复
插入数据: 17
插入数据: 23
需要进行旋转修复
插入数据: 35
需要进行染色修复
需要进行旋转修复
插入数据: 40
需要进行旋转修复
插入数据: 55
需要进行染色修复
需要进行染色修复
根节点,需要进行染色操作
插入数据: 32
插入数据: 231
需要进行旋转修复
[颜色:黑 数据:19] [颜色:黑 数据:10] [颜色:黑 数据:6] [颜色:红 数据:4] [颜色:红 数据:8] [颜色:黑 数据:11] [颜色:红 数据:17] [颜色:黑 数据:23] [颜色:黑 数据:20] [颜色:红 数据:35] [颜色:黑 数据:26] [颜色:红 数据:32] [颜色:黑 数据:55] [颜色:红 数据:40] [颜色:红 数据:231]
#