zoukankan      html  css  js  c++  java
  • HDU1492The number of divisors(约数) about Humble Numbers 求因子总数+唯一分解定理的变形

    A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, ... shows the first 20 humble numbers. 

    Now given a humble number, please write a program to calculate the number of divisors about this humble number.For examle, 4 is a humble,and it have 3 divisors(1,2,4);12 have 6 divisors. 

    InputThe input consists of multiple test cases. Each test case consists of one humble number n,and n is in the range of 64-bits signed integer. Input is terminated by a value of zero for n. 
    OutputFor each test case, output its divisor number, one line per case. 
    Sample Input

    4
    12
    0

    Sample Output

    3
    6

    题意:给出一个丑数n,这个数必定可以分解成多个2、3、5、7的形式

    求:n的因子数

    思路:唯一分解定理求因子个数,唯一不同的是唯一分解定理需要记录每个质数的指数,而该题则已经确定是2、3、5、7了,所以只要对这四个数进行计算指数再相互之间+1相乘即可

     1 #include<stdio.h>
     2 #include<iostream>
     3 #include<string.h>
     4 using namespace std;
     5 typedef long long ll;
     6 
     7 //ll n;
     8 //
     9 //ll prime()
    10 //{
    11 //    ll ans=0;
    12 //    for(ll i=1;i<=n;i++)
    13 //    {
    14 //        if(n%i==0)
    15 //            ans++;
    16 //    }
    17 //    return ans;
    18 //}
    19 
    20 int mark[4];
    21 int main()
    22 {
    23     ll n;
    24     while(~scanf("%lld",&n)&&n)
    25     {
    26 //        printf("%lld\n",prime());
    27         memset(mark,0,sizeof(mark));//每个数字的指数
    28         while(n&&n%2==0)
    29         {
    30             mark[0]++;
    31             n=n/2;
    32 //            cout<<n<<endl;
    33         }
    34 //        cout<<"***"<<mark[0]<<endl;
    35         while(n&&n%3==0)
    36         {
    37             mark[1]++;
    38             n=n/3;
    39         }
    40         while(n&&n%5==0)
    41         {
    42             mark[2]++;
    43             n=n/5;
    44         }
    45         while(n&&n%7==0)
    46         {
    47             mark[3]++;
    48             n=n/7;
    49         }
    50         cout<<(1+mark[0])*(1+mark[1])*(1+mark[2])*(1+mark[3])<<endl;
    51     }
    52     return 0;
    53 }
  • 相关阅读:
    ASCII 说明
    用GDB调试程序
    手把手教你使用Matplotlib绘图|实战
    什么!Python还能帮你找老婆?
    词云图的几种制作方法评测,你pick哪款
    我常用的10个Python实用小Trick
    爬虫代码详解Python多线程、多进程、协程
    [转载] tomcat集群基于redis共享session解决方案
    集群/分布式环境下5种session处理策略
    java7特性之 try-with-resources
  • 原文地址:https://www.cnblogs.com/OFSHK/p/11342683.html
Copyright © 2011-2022 走看看