zoukankan      html  css  js  c++  java
  • HDU1492The number of divisors(约数) about Humble Numbers 求因子总数+唯一分解定理的变形

    A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, ... shows the first 20 humble numbers. 

    Now given a humble number, please write a program to calculate the number of divisors about this humble number.For examle, 4 is a humble,and it have 3 divisors(1,2,4);12 have 6 divisors. 

    InputThe input consists of multiple test cases. Each test case consists of one humble number n,and n is in the range of 64-bits signed integer. Input is terminated by a value of zero for n. 
    OutputFor each test case, output its divisor number, one line per case. 
    Sample Input

    4
    12
    0

    Sample Output

    3
    6

    题意:给出一个丑数n,这个数必定可以分解成多个2、3、5、7的形式

    求:n的因子数

    思路:唯一分解定理求因子个数,唯一不同的是唯一分解定理需要记录每个质数的指数,而该题则已经确定是2、3、5、7了,所以只要对这四个数进行计算指数再相互之间+1相乘即可

     1 #include<stdio.h>
     2 #include<iostream>
     3 #include<string.h>
     4 using namespace std;
     5 typedef long long ll;
     6 
     7 //ll n;
     8 //
     9 //ll prime()
    10 //{
    11 //    ll ans=0;
    12 //    for(ll i=1;i<=n;i++)
    13 //    {
    14 //        if(n%i==0)
    15 //            ans++;
    16 //    }
    17 //    return ans;
    18 //}
    19 
    20 int mark[4];
    21 int main()
    22 {
    23     ll n;
    24     while(~scanf("%lld",&n)&&n)
    25     {
    26 //        printf("%lld\n",prime());
    27         memset(mark,0,sizeof(mark));//每个数字的指数
    28         while(n&&n%2==0)
    29         {
    30             mark[0]++;
    31             n=n/2;
    32 //            cout<<n<<endl;
    33         }
    34 //        cout<<"***"<<mark[0]<<endl;
    35         while(n&&n%3==0)
    36         {
    37             mark[1]++;
    38             n=n/3;
    39         }
    40         while(n&&n%5==0)
    41         {
    42             mark[2]++;
    43             n=n/5;
    44         }
    45         while(n&&n%7==0)
    46         {
    47             mark[3]++;
    48             n=n/7;
    49         }
    50         cout<<(1+mark[0])*(1+mark[1])*(1+mark[2])*(1+mark[3])<<endl;
    51     }
    52     return 0;
    53 }
  • 相关阅读:
    1024. Palindromic Number (25)
    Android 它们的定义View
    Acdreamoj1116(Gao the string!)弦hash+二分法+矩阵高速功率
    Linux SVNserver建立
    JavaScript window.location物
    [D3] Reuse Transitions in D3 v4
    [D3] Animate Transitions in D3 v4
    [D3] Debug D3 v4 with Dev Tools
    [Angular] Custom directive Form validator
    [D3] Build an Area Chart with D3 v4
  • 原文地址:https://www.cnblogs.com/OFSHK/p/11342683.html
Copyright © 2011-2022 走看看