Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will consume no others.
Farmer John has cooked fabulous meals for his cows, but he forgot to check his menu against their preferences. Although he might not be able to stuff everybody, he wants to give a complete meal of both food and drink to as many cows as possible.
Farmer John has cooked F (1 ≤ F ≤ 100) types of foods and prepared D (1 ≤ D ≤ 100) types of drinks. Each of his N (1 ≤ N ≤ 100) cows has decided whether she is willing to eat a particular food or drink a particular drink. Farmer John must assign a food type and a drink type to each cow to maximize the number of cows who get both.
Each dish or drink can only be consumed by one cow (i.e., once food type 2 is assigned to a cow, no other cow can be assigned food type 2).
Input
Lines 2.. N+1: Each line i starts with a two integers Fi and Di, the number of dishes that cow i likes and the number of drinks that cow i likes. The next Fi integers denote the dishes that cow i will eat, and the Di integers following that denote the drinks that cow i will drink.
Output
Sample Input
4 3 3 2 2 1 2 3 1 2 2 2 3 1 2 2 2 1 3 1 2 2 1 1 3 3
Sample Output
3
Hint
Cow 1: no meal
Cow 2: Food #2, Drink #2
Cow 3: Food #1, Drink #1
Cow 4: Food #3, Drink #3
The pigeon-hole principle tells us we can do no better since there are only three kinds of food or drink. Other test data sets are more challenging, of course.
AC代码:(不好写)bfs+dfs+dinic
1 #include<string.h> 2 #include<iostream> 3 #include<stdio.h> 4 #include<algorithm> 5 #include<queue> 6 #include<vector> 7 #include<map> 8 #include<cmath> 9 using namespace std; 10 #define inf 0x3f3f3f3f 11 //const int N=20020; 12 const int N=1100; 13 14 typedef long long ll; 15 16 int n,m,s,t,tot; 17 int head[N],nextt[N],dep[N],cur[N]; 18 int f[N][N],d[N][N],e[N][N]; 19 20 int bfs()//重新建图、进行分层建图 21 { 22 queue<int>Q; 23 memset(dep,-1,sizeof(dep));//这里注意一下是mem还是for清空,小心超时 24 dep[s]=1;//dep[s]=1; 相当于给源点分层为1 25 Q.push(s);//Q.push(s); 26 while(!Q.empty()) 27 { 28 int u=Q.front(); 29 Q.pop(); 30 for(int i=1; i<=t; i++) 31 { 32 //如果可以到达且还没有访问则入队 33 //可以到达的条件是剩余容量大于0 34 //没有访问的条件是当前层数==-1 35 if(e[u][i]>0&&dep[i]==-1) 36 { 37 dep[i]=dep[u]+1; 38 Q.push(i); 39 } 40 } 41 } 42 return dep[t]!=-1; 43 } 44 45 int dfs(int u,int minflow)//u起点(第一次传进来是1,之后会变)/查找路径上的最小流量 46 { 47 if(u==t) 48 return minflow; 49 int x; 50 for(int v=1; v<=t; v++) 51 { 52 if(e[u][v]>0&&dep[v]==dep[u]+1&&(x=dfs(v,min(minflow,e[u][v])))) 53 // if(e[u][v]>0&&dep[v]==dep[u]+1) 54 55 { 56 // x=dfs(v,min(minflow,e[u][v])); 57 e[u][v]-=x; 58 e[v][u]+=x; 59 return x; 60 } 61 } 62 return 0;//一定要写!!! 63 } 64 65 66 67 int dinic() 68 { 69 int sum=0; 70 while(bfs())//先进行分层 71 { 72 while(1) 73 { 74 int w=dfs(s,inf); 75 if(w==0) 76 break;//找不到增广路了 77 sum+=w;//找到则进行累加 78 } 79 } 80 return sum; 81 } 82 83 int main() 84 { 85 int F,D; 86 while(~scanf("%d %d %d",&n,&F,&D)) 87 { 88 memset(e,0,sizeof(nextt)); 89 for(int i=1; i<=n; i++) 90 { 91 int ff,dd; 92 scanf("%d %d",&ff,&dd); 93 for(int j=1; j<=ff; j++) 94 scanf("%d",&f[i][j]); 95 for(int j=1; j<=dd; j++) 96 scanf("%d",&d[i][j]); 97 } 98 //s-f、f-牛、牛-牛、牛-d、d-t 99 //0 4 3 2 -> 0 1-4 5-7 8-9 100 //s:0 f:1-F 牛:F+1,F+n 101 //牛:F+n+1,F+2n d:F+2n+1,F+2n+D t:F+2n+D+1 102 103 s=0,t=F+2*n+D+1; 104 for(int i=1; i<=F; i++) //s-f 105 //add(s,i,1);//inf?? 106 e[s][i]=1; 107 for(int i=1; i<=n; i++) //枚举牛,可以少些一些for循环 108 { 109 for(int j=1; j<=F; j++) 110 { 111 if(f[i][j]) 112 // add(j,i+F,1); 113 // add(f[i][j],i+F,1); 114 e[f[i][j]][i+F]=1; 115 } 116 //add(F+i,F+n+j,1); 117 e[F+i][F+n+i]=1; 118 for(int j=1; j<=D; j++) 119 { 120 if(d[i][j]) 121 e[F+n+i][F+2*n+d[i][j]]=1; 122 //add(F+n+i,F+2*n+i,1); 123 //add(F+n+i,F+2*n+d[i][j],1); 124 } 125 } 126 for(int i=1; i<=D; i++) 127 e[F+2*n+i][t]=1; 128 //add(F+2*n+i,t,1); 129 int ans=dinic(); 130 printf("%d\n",ans); 131 } 132 return 0; 133 }