zoukankan      html  css  js  c++  java
  • 论文总结(negFIN: An efficient algorithm for fast mining frequent itemsets)

    一、论文整体思路:

    作者提出了一种基于前缀树的数据结构,NegNodeset,其实是对之前前缀树的一种改进,主要区别在于采用了位图编码,通过这种数据结构产生的算法称为negFIN。

    negFIN算法高效有三个原因

    二、问题定义

           I= {i1,i2,…, init} 表示事务数据库所有项的集合,T表示每个事务,TI ,DB = {T1,T2,…, Tnt} 是所有事务的集合

    P称为k-项集,如果PT ,那么事务T包含了项集P,support(P)是DB中包含P的百分比,如果support(P)大于min-support

    我们就称P为频繁项集,频繁项集是2的nit 次方,nit = |I| 。

    三、之前贡献

         主要对前缀树的研究,结构1)Node-list,2)N-list,3)Nodeset,4)DisffNodeset (***先理解下前缀树和哈希树)

         1) Node-list和N-list是通过对节点进行先序和后序排列,这两种数据结构产生的算法分别是PPV和PrePost频繁项集挖掘算法,

               这两个算法的缺点消耗了大量内存;

         2)对于这种情况,数据结构Nodeset将其进行改进,k-项集的获得通过取k-1项集的交集,算法为FIN,确定是对于一些数据集Nodeset基数太大;

         3)为了将其进行改进,DiffNodest数据结构提出,k-项集的获得两个不同的k-1项集获得,算法为dFIN,算法的更快了。

         4)文中提出了NegNodeset为了实现计算两个不同的DiffNodesets花费时间较长,主要利用的是位图,提出的算法negFIN;

    四、相关工作

            频繁项集挖掘算法

           1)通过产生候选项集

                比如Apriori算法,以及一些其他的算法,这种方法的主要缺点是需要多次扫描数据库。

           2)模式增长方法

                 这种方式不会产生候选项集,也避免了多次扫描数据库,包括FP-tree和FP-growth算法,缺点:对于稀疏的数据集效率低,数据结构复杂。

           3)前缀树方法

             

    五、基本术语

            F1频繁项集的集合,例如F1 = {e, b, a, c, d} ,
    L1是根据支持度进行非降序排列的频繁项集L1 = [e, d, c, b, a] ,L1 = [i0,i1,…, inf - 1] ,nf=|F1|
    k-项集P,Pk = iki2i1 ,ik>...>i2>i1

    例如P = {e, b, d} ,P3 = bde ,对Pk进行位图编码BMC(Pk) = bnf - 1b1b0 ,这里需要注意的是

    BMC(node-path)分为两部分,主要部分和无关部分



     

  • 相关阅读:
    RabbitMQ指南之一:"Hello World!"
    Java8新特性之五:Optional
    Java8新特性之四:接口默认方法和静态方法
    Java8新特性之三:Stream API
    Java8新特性之二:方法引用
    Notepad++编辑器——Verilog代码片段和语法检查
    数电(5):半导体存储电路
    数电(4):组合逻辑电路
    DDR3_新版(1):IP核调取和官方例程仿真
    数电(2):逻辑代数的基本定理
  • 原文地址:https://www.cnblogs.com/Optimism/p/10711138.html
Copyright © 2011-2022 走看看