A
Problem description
求r到l间的是k的幂的数
Data Limit:1 ≤ l ≤ r ≤ 10e18, 2 ≤ k ≤ 10e9 Time Limit: 1s
Solution
暴力求,注意要用long long 为防止前一个数*k后爆long long,可以判一下1e18/k是否大于前一个数
Code
#include<cstdio> long long r,l,k,n,i,j,t,t1; int main() { bool bo=false; scanf("%lld%lld%lld",&l,&r,&k); t=1; while (t<=r) { if (t>=l&&t<=r) { printf("%lld ",t); bo=true; } t1=t; t=t*k; if (t/k!=t1)break; } long long tt=-1; if (!bo)printf("%lld",tt); return 0; }
B
Problem description
求n个数的乘积,但n个数中至少有n-1个美丽数 美丽数是最多有一个1,其他是0的数
Data Limit: 1 ≤ n ≤ 100 000Time Limit: 1s
Solution
首先,由于数可能很大,不能用long long读,要用字符串 然后通过找空格挑出n个数,判断末尾共有几个0,再找出那个普通数,在后面加0即可. 注意特判没有普通数的情况
Code
var s,t,ans:ansistring; i,j,n,tt,l:longint; begin readln(n); readln(t); t:=t+' '; for l:=1 to n do begin s:=copy(t,1,pos(' ',t)-1); if s[1]='0' then begin write(0); halt; end; while s[length(s)]='0' do begin inc(tt); delete(s,length(s),1); end; if (length(s)<>1)or(s[1]<>'1')then ans:=s; delete(t,1,pos(' ',t)); if l<>n then while (t[1]=' ') do delete(t,1,1); end; write(ans); if ans='' then write(1); for i:=1 to tt do write(0); end.
C
Problem description
给一个多边形的n个点与旋转中心,求多边形经过的路径面积
Data Limit:3<=n <= 1e5 Time Limit: 1s
Solution
易得路径是一个环,求最大半径和最小半径然后套公式 注意:最大半径一定是顶点到旋转中心的距离,但最小半径可能是点到边的垂线段长
Code
#include<cstdio> #include<cmath> using namespace std; long long px,py,x[1000000],y[1000000],n,i,j,ans1[10000],pi,lp,lans,hh,p[1000000],lll[10000],ll; double l1[100][10],d; double max,min,ans; double PointToSegDist(double x, double y, double x1, double y1, double x2, double y2) { double cross = (x2 - x1) * (x - x1) + (y2 - y1) * (y - y1); if (cross <= 0) return sqrt((x - x1) * (x - x1) + (y - y1) * (y - y1)); double d2 = (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1); if (cross >= d2) return sqrt((x - x2) * (x - x2) + (y - y2) * (y - y2)); l1[i][1]=y1-y2; l1[i][2]=x2-x1; l1[i][3]=-l1[i][1]*x1-l1[i][2]*y1; d=(abs(l1[i][1]*px+l1[i][2]*py+l1[i][3]))/sqrt(l1[i][1]*l1[i][1]+l1[i][2]*l1[i][2]); return(d); } int main() { scanf("%lld%lld%lld",&n,&px,&py);max=-10000;min=10000000000000; for (i=1;i<=n;i++) { scanf("%lld%lld",&x[i],&y[i]); d=(px-x[i])*(px-x[i])+(py-y[i])*(py-y[i]); if (d>=max)max=d; if (d<=min)min=d; } for (i=2;i<=n;i++) { d=PointToSegDist(px,py,x[i],y[i], x[i-1], y[i-1]); d=d*d; if (d>=max)max=d; if (d<=min)min=d; } d=PointToSegDist(px,py,x[1],y[1], x[n], y[n]); d=d*d; if (d>=max)max=d; if (d<=min)min=d; ans=(max-min)*3.1415926535897932384626433; printf("%.18f",ans); return 0; }
D
Problem description
有n个技能,给出初始等级和金币m(一金可以给一个技能升一级),求出最大威力. 威力:满级技能的个数(每个技能满级相同为A)乘mp(给出)+最低等级的技能等级乘mc(给出).
Data Limit:1 ≤ n ≤ 100 000, 1 ≤ A ≤ 109, 0 ≤ cf, cm ≤ 1000, 0 ≤ m ≤ 1015 Time Limit: 1s
Solution
按等级排序,从后向前枚举升满的技能数,然后二分求出剩下的金币可以做到的最低技能等级的最大值,然后求出此时威力.
Code
#include<cstdio> #include<iostream> #include<algorithm> using namespace std; #define MS(x,y) memset(x,y,sizeof(x)) #define MC(x,y) memcpy(x,y,sizeof(x)) #define MP(x,y) make_pair(x,y) #define ls o<<1 #define rs o<<1|1 typedef long long LL; typedef unsigned long long UL; typedef unsigned int UI; template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b > a)a = b; } template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b < a)a = b; } const int N = 1e5 + 10, M = 0, Z = 1e9 + 7, ms63 = 0x3f3f3f3f; int n; LL m; int A; LL cf, cm; LL sum[N]; struct Skill { int v, o; }a[N]; bool cmp1(Skill a, Skill b) { return a.v < b.v; } bool cmp2(Skill a, Skill b) { return a.o < b.o; } int solve(int R, LL now) { if (R == 0)return A; int l = 1; int r = R; while (l < r) { int mid = (l + r + 1) >> 1; LL need = (LL)a[mid].v * mid - sum[mid]; if (need > now)r = mid - 1; else l = mid; } LL need = (LL)a[l].v*l - sum[l]; LL more = (now - need) / l; return min((LL)A, a[l].v + more); } int main() { while (~scanf("%d%d%lld%lld%lld", &n, &A, &cf, &cm, &m)) { for (int i = 1; i <= n; ++i) { scanf("%d", &a[i].v); a[i].o = i; } sort(a + 1, a + n + 1, cmp1); a[n + 1].v = A; for (int i = 1; i <= n; ++i)sum[i] = sum[i - 1] + a[i].v; LL ans = -1; LL cost = 0; int v, p; for (int i = n; i >= 0; --i) { cost += A - a[i + 1].v; if (cost > m)break; int minv = solve(i, m - cost); LL tmp = minv*cm + (n - i)*cf; if (tmp > ans) { ans = tmp; p = i; v = minv; } } printf("%lld ", ans); for (int i = n; i > p; --i)a[i].v = A; for (int i = 1; i <= p; ++i)gmax(a[i].v, v); sort(a + 1, a + n + 1, cmp2); for (int i = 1; i <= n; ++i)printf("%d ", a[i].v); puts(""); } return 0; }