题面
在一个地区的选举中,共有V个人参加了投票,每一票只可能投给N个政党中的一个。当地的议会共有M个席位。不妨将N个政党编号为1到N,并且设编号为i的政党最终的得票为Vi,则议会中的席位按如下规则分配: 1、将得票数小于总选票的5%的政党剔除。 2、初始时议会为空,每个政党都只有0个席位。 3、对于每个政党P,计算一个参数Qp = Vp / (Sp + 1),Vp为政党P的最终得票,Sp为政党P当前已经在议会拥有的席位。 4、给Qp最大的政党分配一个席位,如果有多个政党的Qp相同,则将席位分给其中编号最小的政党。 5、重复3和4,直到议会已满。 由于计票还没有结束,现在我们只知道一部分选票的投票结果。给出V、N、M以及每个政党当前的得票,请你计算每个政党最多以及最少能赢得多少个席位。
题解
记剩下所有票数为。
位置上的的最大值就是把全部给,然后暴力枚举就行了。每次时间复杂度,总时间复杂度。
下面是求的最小值。方法是二分,假设二分的值是,问题就转化为是否能让剩下的人凑足个席位。可以发现只有票数的人才可能获得席位。所以只有票数前才可能获得席位。按贪心的思路,一定是从大到小排序后去前个来凑足个席位。
设表示用前个占领个席位所需要的最少额外票数,那么转移为:
表示让第个位置的人占领个席位所需要的最小票数。
要在占领个席位的情况下,让第个位置的人占领个席位,需要满足的条件有:
- 或者
那么直接转移就行了。每次时间复杂度,总时间复杂度
CODE
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
inline void rd(int &x) {
char ch; int flg=1; while(!isdigit(ch=getchar()))if(ch=='-')flg=-flg;
x = 0; do x=x*10+ch-'0'; while(isdigit(ch=getchar())); x*=flg;
}
const int MAXN = 205;
int n, m, V, sum, a[MAXN], c[MAXN], id[MAXN];
inline bool cmp(int i, int j) { return a[i] > a[j]; }
int ans[MAXN], s[MAXN];
inline void Solve_mx() { //暴力枚举模拟
for(int i = 1; i <= n; ++i) {
a[i] += sum;
for(int j = 1; j <= n; ++j) s[j] = 0;
for(int j = 1; j <= m; ++j) {
int x = -1;
for(int k = 1; k <= n; ++k) if(a[k]*20 >= V) {
if(x == -1 || a[k]*(s[x]+1) > a[x]*(s[k]+1)) x = k;
}
if(~x) ++s[x];
}
printf("%d%c", s[i], "
"[i==n]);
a[i] -= sum;
}
}
int f[21][MAXN];
inline bool check(int x, int mid) {
int cur = 0; for(int i = 0; i <= m; ++i) f[cur][i] = sum+1;
f[cur][0] = 0;
for(int i = 1; i <= n && i <= 20; ++i) {
if(i == x) continue; cur ^= 1;
for(int j = 0; j <= m; ++j) {
f[cur][j] = sum+1;
for(int k = 0; k <= j; ++k) {
int delta = (k * a[x] + mid) / (mid + 1) - a[i]; //向上取整
if(k * a[x] % (mid + 1) == 0 && id[x] < id[i] && k) ++delta; //判断在原数列编号大小
delta = delta < 0 ? 0 : delta;
if(k && (a[i]+delta)*20 < V) delta += (V - (a[i]+delta)*20 + 19) / 20; //凑足5%
f[cur][j] = min(f[cur][j], f[cur^1][j-k] + delta);
}
}
}
return f[cur][m-mid] <= sum;
}
inline int getmin(int x) {
if(a[x]*20 < V) return 0;
int l = 0, r = m, mid;
while(l < r) {
mid = (l + r) >> 1;
if(check(x, mid)) r = mid;
else l = mid+1;
}
return l;
}
inline void Solve_mn() {
for(int i = 1; i <= n; ++i) id[i] = i, c[i] = a[i];
sort(id + 1, id + n + 1, cmp); //从大到小排序
for(int i = 1; i <= n; ++i) a[i] = c[id[i]];
for(int i = 1; i <= n; ++i) ans[id[i]] = getmin(i);
for(int i = 1; i <= n; ++i) printf("%d%c", ans[i], "
"[i==n]);
}
int main () {
rd(V), rd(n), rd(m), sum = V;
for(int i = 1; i <= n; ++i) rd(a[i]), sum -= a[i];
Solve_mx();
Solve_mn();
}