zoukankan      html  css  js  c++  java
  • BZOJ 2119: 股市的预测 (Hash / 后缀数组 + st表)

    转博客大法好

    自己画一画看一看,就会体会到这个设置关键点的强大之处了.

    CODE(sa)

    O(nlogn)1436msO(nlogn) o 1436ms

    #include <bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    template<class T>inline void read(T &num) {
        register char ch; register int flg = 1;
        while(!isdigit(ch=getchar()))if(ch=='-')flg=-flg;
        for(num=0; isdigit(ch); num=num*10+ch-'0', ch=getchar());
        num *= flg;
    }
    const int MAXN = 5e4+5;
    
    int x[MAXN], y[MAXN], c[MAXN], Log[MAXN];
    
    int n, s[MAXN], b[MAXN], tot;
    struct SA {
        int sa[MAXN], rk[MAXN], h[MAXN], f[MAXN][16];
        inline void Get_Sa(int m) {
            for(int i = 1; i <= m; ++i) c[i] = 0;
            for(int i = 1; i <= n; ++i) ++c[x[i]=s[i]];
            for(int i = 2; i <= m; ++i) c[i] += c[i-1];
            for(int i = n; i >= 1; --i) sa[c[x[i]]--] = i;
            for(int k = 1; k <= n; k<<=1) {
                int p = 0;
                for(int i = n-k+1; i <= n; ++i) y[++p] = i;
                for(int i = 1; i <= n; ++i) if(sa[i]>k) y[++p] = sa[i]-k;
                for(int i = 1; i <= m; ++i) c[i] = 0;
                for(int i = 1; i <= n; ++i) ++c[x[i]];
                for(int i = 2; i <= m; ++i) c[i] += c[i-1];
                for(int i = n; i >= 1; --i) sa[c[x[y[i]]]--] = y[i];
                swap(x, y);
                x[sa[1]] = 1; p = 1;
                for(int i = 2; i <= n; ++i)
                    x[sa[i]] = (y[sa[i]] == y[sa[i-1]] && y[sa[i]+k] ==y[sa[i-1]+k]) ? p : ++p;
                if((m=p) == n) break;
            }
        }
        inline void Get_Height() {
            int k = 0;
            for(int i = 1; i <= n; ++i) rk[sa[i]] = i;
            for(int i = 1; i <= n; ++i) {
                if(rk[i] == 1) continue;
                if(k) --k;
                int j = sa[rk[i]-1];
                while(i+k <= n && j+k <= n && s[i+k] == s[j+k]) ++k;
                h[rk[i]] = k;
            }
        }
        inline void rev() {
            reverse(rk + 1, rk + n + 1);
            for(int i = 1; i <= n; ++i) sa[i] = n-i+1;
        }
        inline void init() {
            Get_Sa(n);
            Get_Height();
        }
        inline void initST() {
            for(int i = 1; i <= n; ++i) f[i][0] = h[i];
            for(int j = 1; j <= Log[n]; ++j)
                for(int i = 1; i <= n-(1<<j)+1; ++i)
                    f[i][j] = min(f[i][j-1], f[i+(1<<j-1)][j-1]);
        }
        inline int query(int l, int r) {
            l = rk[l], r = rk[r];
            if(l > r) swap(l, r);
            ++l;
            int k = Log[r-l+1];
            return min(f[l][k], f[r-(1<<k)+1][k]);
        }
    }sa1, sa2;
    int m;
    int main() {
        read(n), read(m);
        for(int i = 1; i <= n; ++i) read(s[i]);
        --n;
        for(int i = 1; i <= n; ++i) b[++tot] = (s[i]=s[i+1]-s[i]);
        s[n+1] = 0;
        sort(b + 1, b + tot + 1); tot = unique(b + 1, b + tot + 1) - b - 1;
        for(int i = 1; i <= n; ++i) s[i] = lower_bound(b + 1, b + tot + 1, s[i]) - b;
    
        for(int i = 2; i <= n; ++i) Log[i] = Log[i>>1] + 1;
        sa1.init(), sa1.initST();
        reverse(s + 1, s + n + 1);
        sa2.init(), sa2.rev(), sa2.initST();
        LL ans = 0;
        for(int len = 1; (len<<1)+m <= n; ++len)
            for(int i = 1, j; (j=i+len+m) <= n; i += len) {
                int l = min(sa2.query(i, j), len), r = min(sa1.query(i, j), len);
                if(l + r > len) ans += l + r - len;
            }
        printf("%lld
    ", ans);
    }
    
    

    CODE(hash)

    O(nlog2n)688msO(nlog^2n) o 688ms

    实测hash速度是sa的2.5倍…
    常数的幽怨…

    市面上貌似找不到hash的代码的说…

    #include <bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    template<class T>inline void read(T &num) {
        register char ch; register int flg = 1;
        while(!isdigit(ch=getchar()))if(ch=='-')flg=-flg;
        for(num=0; isdigit(ch); num=num*10+ch-'0', ch=getchar());
        num *= flg;
    }
    const int MAXN = 5e4+5;
    const int p = 137;
    int n, m, s[MAXN], h[MAXN], mul[MAXN];
    inline int hsh(int l, int r) {
        return h[r] - h[l-1]*mul[r-l+1];
    }
    inline int querypre(int i, int j, int up) {
        int l = 0, r = min(min(i, j), up), mid;
        while(l < r) {
            mid = (l + r + 1) >> 1;
            if(hsh(i-mid+1, i) == hsh(j-mid+1, j)) l = mid;
            else r = mid-1;
        }
        return l;
    }
    inline int querysuf(int i, int j, int up) {
        int l = 0, r = min(min(n-i+1, n-j+1), up), mid;
        while(l < r) {
            mid = (l + r + 1) >> 1;
            if(hsh(i, i+mid-1) == hsh(j, j+mid-1)) l = mid;
            else r = mid-1;
        }
        return l;
    }
    int main() {
        read(n), read(m); mul[0] = 1;
        for(int i = 1; i <= n; ++i) read(s[i]);
        for(int i = 1; i < n; ++i) {
            h[i] = h[i-1] * p + s[i+1]-s[i];
            mul[i] = mul[i-1] * p;
        }
        s[n] =  0; --n;
        LL ans = 0;
        for(int len = 1; (len<<1)+m <= n; ++len)
            for(int i = 1, j; (j=i+len+m) <= n; i += len) {
                int l = querypre(i, j, len), r = querysuf(i, j, len);
                if(l + r > len) ans += l + r - len;
            }
        printf("%lld
    ", ans);
    }
    
    
  • 相关阅读:
    1767:字符合并
    成绩单
    floj 2264
    floj 2265 【lxs Contest #141】航海舰队
    CF932D Tree
    1745:分组
    1744:跳台阶
    Xamarin.Forms之跨平台性能
    Xamarin.Forms之部署和测试(性能)
    Xamarin.Forms数据绑定
  • 原文地址:https://www.cnblogs.com/Orz-IE/p/12039323.html
Copyright © 2011-2022 走看看