题面
求树上某路径上最小的没出现过的权值,有单点修改 添加链接描述
分析
树上带修莫队板题,问题是怎么求最小的没出现过的权值。
因为只有个点,所以没出现过的最小值一定在内,所以大于的无需维护。那么我们就值域分块,每个数开一个数组,那么从小到大枚举块,如果当前块没有满那么就在这个块里查找,每次查找时间复杂度为。因为值域相同,所以总时间复杂度为
- 我用的是倍增求LCA
CODE
#include <bits/stdc++.h>
using namespace std;
template<typename T>inline void read(T &num) {
char ch; while((ch=getchar())<'0'||ch>'9');
for(num=0;ch>='0'&&ch<='9';num=num*10+ch-'0',ch=getchar());
}
const int MAXN = 50005;
int n, m, TreeB, ValB, TIMES, cntq, cntc;
int a[MAXN], la[MAXN], bel[MAXN], ans[MAXN];
struct QUERY {
int u, v, t, id;
inline bool operator <(const QUERY &o)const {
return bel[u] == bel[o.u] ? (bel[v] == bel[o.v] ? t < o.t : bel[v] < bel[o.v]) : bel[u] < bel[o.u];
}
}Q[MAXN];
struct CHANGE { int i, u, v; }C[MAXN];
int fir[MAXN], to[MAXN<<1], nxt[MAXN<<1], cnt;
inline void add(int u, int v) { to[++cnt] = v; nxt[cnt] = fir[u]; fir[u] = cnt; }
int stk[MAXN], f[MAXN][16], dep[MAXN], dfn[MAXN], tmr, tot, top;
inline void dfs(int u, int ff) {
int bot = top; dfn[u] = ++tmr;
dep[u] = dep[f[u][0]=ff] + 1;
for(int i = fir[u]; i; i = nxt[i])
if(to[i] != ff) {
dfs(to[i], u);
if(top-bot > TreeB) {
++tot;
while(top > bot) bel[stk[top--]] = tot;
}
}
stk[++top] = u;
}
inline void Pre() {
for(int j = 1; j < 16; ++j)
for(int i = 1; i <= n; ++i)
f[i][j] = f[f[i][j-1]][j-1];
}
bool vis[MAXN]; int sz[MAXN], val[MAXN];
inline int lca(int u, int v) {
if(dep[u] < dep[v]) swap(u, v);
for(int j = 0; j < 16; ++j)
if((dep[u]-dep[v])&(1<<j)) u = f[u][j];
if(u == v) return u;
for(int j = 15; ~j; --j)
if(f[u][j] != f[v][j]) u = f[u][j], v = f[v][j];
return f[u][0];
}
inline void upd(int i) {
if(!vis[i]) {
vis[i] = 1; if(a[i] > n) return;
if(++val[a[i]] == 1) ++sz[a[i]/ValB];
}
else {
vis[i] = 0; if(a[i] > n) return;
if(--val[a[i]] == 0) --sz[a[i]/ValB];
}
}
inline void rev(int u, int v) {
while(u != v) {
if(dep[u] < dep[v]) swap(u, v);
upd(u), u = f[u][0];
}
}
inline void modify(int i, int col) {
if(!vis[i]) { a[i] = col; return; }
upd(i), a[i] = col, upd(i);
}
inline int solve() {
for(int i = 0; ; ++i) if(sz[i] != ValB)
for(int j = i*ValB; ; ++j) if(!val[j])
return j;
}
int main () {
read(n), read(m), TreeB = int(pow(n, 0.67)), ValB = int(sqrt(1.0*n));
for(int i = 1; i <= n; ++i) read(a[i]), la[i] = a[i];
for(int i = 1, u, v; i < n; ++i) read(u), read(v), add(u, v), add(v, u);
for(int i = 1, opt, x, y; i <= m; ++i) {
read(opt), read(x), read(y);
if(!opt) C[++cntc] = (CHANGE){ x, la[x], y }, la[x] = y;
else {
if(dfn[x] > dfn[y]) swap(x, y);
Q[++cntq] = (QUERY){ x, y, cntc, cntq };
}
}
dfs(1, 0); if(top) ++tot; while(top) bel[stk[top--]] = tot; Pre();
sort(Q + 1, Q + cntq + 1);
while(TIMES < Q[1].t) ++TIMES, modify(C[TIMES].i, C[TIMES].v);
rev(Q[1].u, Q[1].v); int LCA = lca(Q[1].u, Q[1].v);
upd(LCA), ans[Q[1].id] = solve(), upd(LCA);
for(int i = 2; i <= cntq; ++i) {
while(TIMES < Q[i].t) ++TIMES, modify(C[TIMES].i, C[TIMES].v);
while(TIMES > Q[i].t) modify(C[TIMES].i, C[TIMES].u), --TIMES;
rev(Q[i-1].u, Q[i].u), rev(Q[i-1].v, Q[i].v), LCA = lca(Q[i].u, Q[i].v);
upd(LCA), ans[Q[i].id] = solve(), upd(LCA);
}
for(int i = 1; i <= cntq; ++i)
printf("%d
", ans[i]);
return 0;
}