zoukankan      html  css  js  c++  java
  • Binder系列6—获取服务(getService)

    copy from: http://gityuan.com/2015/11/15/binder-get-service/

    基于Android 6.0的源码剖析, 本文Client如何向Server获取服务的过程。

    一、 获取服务

    在Native层的服务注册,我们选择以media为例来展开讲解,先来看看media的类关系图。

    1.1 类图

    点击查看大图

    get_media_player_service

    图解:

    • 蓝色: 代表获取MediaPlayerService服务相关的类;
    • 绿色: 代表Binder架构中与Binder驱动通信过程中的最为核心的两个类;
    • 紫色: 代表注册服务和获取服务的公共接口/父类;

    二. 获取Media服务

    2.1 getMediaPlayerService

    [-> framework/av/media/libmedia/IMediaDeathNotifier.cpp]

    sp<IMediaPlayerService>&
    IMediaDeathNotifier::getMediaPlayerService()
    {
        Mutex::Autolock _l(sServiceLock);
        if (sMediaPlayerService == 0) {
            sp<IServiceManager> sm = defaultServiceManager(); //获取ServiceManager
            sp<IBinder> binder;
            do {
                //获取名为"media.player"的服务 【见2.2】
                binder = sm->getService(String16("media.player"));
                if (binder != 0) {
                    break;
                }
                usleep(500000); // 0.5s
            } while (true);
    
            if (sDeathNotifier == NULL) {
                sDeathNotifier = new DeathNotifier(); //创建死亡通知对象
            }
    
            //将死亡通知连接到binder 【见流程14】
            binder->linkToDeath(sDeathNotifier);
            sMediaPlayerService = interface_cast<IMediaPlayerService>(binder);
        }
        return sMediaPlayerService;
    }
    

    其中defaultServiceManager()过程在上一篇文章获取ServiceManager已讲过,返回BpServiceManager。

    在请求获取名为”media.player”的服务过程中,采用不断循环获取的方法。由于MediaPlayerService服务可能还没向ServiceManager注册完成或者尚未启动完成等情况,故则binder返回为NULL,休眠0.5s后继续请求,直到获取服务为止。

    2.2 BpSM.getService

    [-> IServiceManager.cpp ::BpServiceManager]

    virtual sp<IBinder> getService(const String16& name) const
        {
            unsigned n;
            for (n = 0; n < 5; n++){
                sp<IBinder> svc = checkService(name); //【见2.3】
                if (svc != NULL) return svc;
                sleep(1);
            }
            return NULL;
        }
    

    通过BpServiceManager来获取MediaPlayer服务:检索服务是否存在,当服务存在则返回相应的服务,当服务不存在则休眠1s再继续检索服务。该循环进行5次。为什么是循环5次呢,这估计跟Android的ANR时间为5s相关。如果每次都无法获取服务,循环5次,每次循环休眠1s,忽略checkService()的时间,差不多就是5s的时间

    2.3 BpSM.checkService

    [-> IServiceManager.cpp ::BpServiceManager]

    virtual sp<IBinder> checkService( const String16& name) const
    {
        Parcel data, reply;
        //写入RPC头
        data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor());
        //写入服务名
        data.writeString16(name);
        remote()->transact(CHECK_SERVICE_TRANSACTION, data, &reply); //【见2.4】
        return reply.readStrongBinder(); //【见小节2.9】
    }
    

    检索指定服务是否存在, 其中remote()为BpBinder。

    2.4 BpBinder::transact

    [-> BpBinder.cpp]

    status_t BpBinder::transact(
        uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
    {
        if (mAlive) {
            //【见流程2.5】
            status_t status = IPCThreadState::self()->transact(
                mHandle, code, data, reply, flags);
            if (status == DEAD_OBJECT) mAlive = 0;
            return status;
        }
        return DEAD_OBJECT;
    }
    

    Binder代理类调用transact()方法,真正工作还是交给IPCThreadState来进行transact工作,

    2.4.1 IPCThreadState::self

    [-> IPCThreadState.cpp]

    IPCThreadState* IPCThreadState::self()
    {
        if (gHaveTLS) {
    restart:
            const pthread_key_t k = gTLS;
            IPCThreadState* st = (IPCThreadState*)pthread_getspecific(k);
            if (st) return st;
            return new IPCThreadState;  //初始IPCThreadState 【见小节2.4.2】
        }
    
        if (gShutdown) return NULL;
        pthread_mutex_lock(&gTLSMutex);
        if (!gHaveTLS) { //首次进入gHaveTLS为false
            if (pthread_key_create(&gTLS, threadDestructor) != 0) { //创建线程的TLS
                pthread_mutex_unlock(&gTLSMutex);
                return NULL;
            }
            gHaveTLS = true;
        }
        pthread_mutex_unlock(&gTLSMutex);
        goto restart;
    }
    

    TLS是指Thread local storage(线程本地储存空间),每个线程都拥有自己的TLS,并且是私有空间,线程之间不会共享。通过pthread_getspecific/pthread_setspecific函数可以获取/设置这些空间中的内容。从线程本地存储空间中获得保存在其中的IPCThreadState对象。

    2.4.2 IPCThreadState初始化

    [-> IPCThreadState.cpp]

    IPCThreadState::IPCThreadState()
        : mProcess(ProcessState::self()),
          mMyThreadId(gettid()),
          mStrictModePolicy(0),
          mLastTransactionBinderFlags(0)
    {
        pthread_setspecific(gTLS, this);
        clearCaller();
        mIn.setDataCapacity(256);
        mOut.setDataCapacity(256);
    }
    

    每个线程都有一个IPCThreadState,每个IPCThreadState中都有一个mIn、一个mOut。成员变量mProcess保存了ProcessState变量(每个进程只有一个)。

    • mIn 用来接收来自Binder设备的数据,默认大小为256字节;
    • mOut用来存储发往Binder设备的数据,默认大小为256字节。

    2.5 IPC::transact

    [-> IPCThreadState.cpp]

    status_t IPCThreadState::transact(int32_t handle,
                                      uint32_t code, const Parcel& data,
                                      Parcel* reply, uint32_t flags)
    {
        status_t err = data.errorCheck(); //数据错误检查
        flags |= TF_ACCEPT_FDS;
        ....
        if (err == NO_ERROR) {
             // 传输数据 【见流程2.6】
            err = writeTransactionData(BC_TRANSACTION, flags, handle, code, data, NULL);
        }
    
        if (err != NO_ERROR) {
            if (reply) reply->setError(err);
            return (mLastError = err);
        }
    
        if ((flags & TF_ONE_WAY) == 0) { //flags=0进入该分支
            if (reply) {
                //等待响应 【见流程2.7】
                err = waitForResponse(reply);
            } else {
                Parcel fakeReply;
                err = waitForResponse(&fakeReply);
            }
    
        } else {
            //不需要响应消息的binder则进入该分支
            err = waitForResponse(NULL, NULL);
        }
        return err;
    }
    

    2.6 IPC.writeTransactionData

    [-> IPCThreadState.cpp]

    status_t IPCThreadState::writeTransactionData(int32_t cmd, uint32_t binderFlags,
        int32_t handle, uint32_t code, const Parcel& data, status_t* statusBuffer)
    {
        binder_transaction_data tr;
        tr.target.ptr = 0;
        tr.target.handle = handle; // handle = 0
        tr.code = code;            // code = CHECK_SERVICE_TRANSACTION
        tr.flags = binderFlags;    // binderFlags = 0
        tr.cookie = 0;
        tr.sender_pid = 0;
        tr.sender_euid = 0;
    
        // data为记录Media服务信息的Parcel对象
        const status_t err = data.errorCheck();
        if (err == NO_ERROR) {
            tr.data_size = data.ipcDataSize();  // mDataSize
            tr.data.ptr.buffer = data.ipcData(); //mData
            tr.offsets_size = data.ipcObjectsCount()*sizeof(binder_size_t); //mObjectsSize
            tr.data.ptr.offsets = data.ipcObjects(); //mObjects
        } else if (statusBuffer) {
            ...
        } else {
            return (mLastError = err);
        }
    
        mOut.writeInt32(cmd);         //cmd = BC_TRANSACTION
        mOut.write(&tr, sizeof(tr));  //写入binder_transaction_data数据
        return NO_ERROR;
    }
    

    其中handle的值用来标识目的端,注册服务过程的目的端为service manager,此处handle=0所对应的是binder_context_mgr_node对象,正是service manager所对应的binder实体对象。binder_transaction_data结构体是binder驱动通信的数据结构,该过程最终是把Binder请求码BC_TRANSACTION和binder_transaction_data结构体写入到mOut

    2.7 IPC.waitForResponse

    [-> IPCThreadState.cpp]

    status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult)
    {
        int32_t cmd;
        int32_t err;
    
        while (1) {
            if ((err=talkWithDriver()) < NO_ERROR) break; // 【见流程2.8】
            err = mIn.errorCheck();
            if (err < NO_ERROR) break;
            if (mIn.dataAvail() == 0) continue;
    
            cmd = mIn.readInt32();
            switch (cmd) {
                case BR_TRANSACTION_COMPLETE: ...
                case BR_DEAD_REPLY: ...
                case BR_FAILED_REPLY: ...
                case BR_ACQUIRE_RESULT: ...
                case BR_REPLY:
                {
                  binder_transaction_data tr;
                  err = mIn.read(&tr, sizeof(tr));
                  if (reply) {
                      if ((tr.flags & TF_STATUS_CODE) == 0) {
                          reply->ipcSetDataReference(
                              reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
                              tr.data_size,
                              reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets),
                              tr.offsets_size/sizeof(binder_size_t),
                              freeBuffer, this);
                      } else {
                          ...
                      }
                  }
                }
                goto finish;
    
                default:
                    err = executeCommand(cmd);
                    if (err != NO_ERROR) goto finish;
                    break;
            }
        }
        ...
        return err;
    }
    

    2.8 IPC.talkWithDriver

    [-> IPCThreadState.cpp]

    status_t IPCThreadState::talkWithDriver(bool doReceive)
    {
        ...
        binder_write_read bwr;
        const bool needRead = mIn.dataPosition() >= mIn.dataSize();
        const size_t outAvail = (!doReceive || needRead) ? mOut.dataSize() : 0;
    
        bwr.write_size = outAvail;
        bwr.write_buffer = (uintptr_t)mOut.data();
    
        if (doReceive && needRead) {
            //接收数据缓冲区信息的填充。如果以后收到数据,就直接填在mIn中了。
            bwr.read_size = mIn.dataCapacity();
            bwr.read_buffer = (uintptr_t)mIn.data();
        } else {
            bwr.read_size = 0;
            bwr.read_buffer = 0;
        }
        //当读缓冲和写缓冲都为空,则直接返回
        if ((bwr.write_size == 0) && (bwr.read_size == 0)) return NO_ERROR;
    
        bwr.write_consumed = 0;
        bwr.read_consumed = 0;
        status_t err;
        do {
            //通过ioctl不停的读写操作,跟Binder Driver进行通信【2.8.1】
            if (ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr) >= 0)
                err = NO_ERROR;
            ...
        } while (err == -EINTR); //当被中断,则继续执行
        ...
        return err;
    }
    

    binder_write_read结构体用来与Binder设备交换数据的结构, 通过ioctl与mDriverFD通信,是真正与Binder驱动进行数据读写交互的过程。 先向service manager进程发送查询服务的请求(BR_TRANSACTION),见Binder系列3—启动ServiceManager。当service manager进程收到该命令后,会执行do_find_service() 查询服务所对应的handle,然后再binder_send_reply()应答 发起者,发送BC_REPLY协议,然后调用binder_transaction(),再向服务请求者的Todo队列 插入事务。

    接下来,再看看binder_transaction过程。

    2.8.1 binder_transaction

    static void binder_transaction(struct binder_proc *proc,
                   struct binder_thread *thread,
                   struct binder_transaction_data *tr, int reply){
        //根据各种判定,获取以下信息:
        struct binder_thread *target_thread; //目标线程
        struct binder_proc *target_proc;    //目标进程
        struct binder_node *target_node;    //目标binder节点
        struct list_head *target_list;      //目标TODO队列
        wait_queue_head_t *target_wait;     //目标等待队列
        ...
    
        //分配两个结构体内存
        struct binder_transaction *t = kzalloc(sizeof(*t), GFP_KERNEL);
        struct binder_work *tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL);
        //从target_proc分配一块buffer
        t->buffer = binder_alloc_buf(target_proc, tr->data_size,
    
        for (; offp < off_end; offp++) {
            switch (fp->type) {
            case BINDER_TYPE_BINDER: ...
            case BINDER_TYPE_WEAK_BINDER: ...
    
            case BINDER_TYPE_HANDLE:
            case BINDER_TYPE_WEAK_HANDLE: {
              struct binder_ref *ref = binder_get_ref(proc, fp->handle,
                    fp->type == BINDER_TYPE_HANDLE);
              ...
              //此时运行在servicemanager进程,故ref->node是指向服务所在进程的binder实体,
              //而target_proc为请求服务所在的进程,此时并不相等。
              if (ref->node->proc == target_proc) {
                if (fp->type == BINDER_TYPE_HANDLE)
                  fp->type = BINDER_TYPE_BINDER;
                else
                  fp->type = BINDER_TYPE_WEAK_BINDER;
                fp->binder = ref->node->ptr;
                fp->cookie = ref->node->cookie; //BBinder服务的地址
                binder_inc_node(ref->node, fp->type == BINDER_TYPE_BINDER, 0, NULL);
    
              } else {
                struct binder_ref *new_ref;
                //请求服务所在进程并非服务所在进程,则为请求服务所在进程创建binder_ref
                new_ref = binder_get_ref_for_node(target_proc, ref->node);
                fp->binder = 0;
                fp->handle = new_ref->desc; //重新赋予handle值
                fp->cookie = 0;
                binder_inc_ref(new_ref, fp->type == BINDER_TYPE_HANDLE, NULL);
              }
            } break;
    
            case BINDER_TYPE_FD: ...
            }
        }
        //分别target_list和当前线程TODO队列插入事务
        t->work.type = BINDER_WORK_TRANSACTION;
        list_add_tail(&t->work.entry, target_list);
        tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE;
        list_add_tail(&tcomplete->entry, &thread->todo);
        if (target_wait)
            wake_up_interruptible(target_wait);
        return;
    }
    

    这个过程非常重要,分两种情况来说:

    1. 当请求服务的进程与服务属于不同进程,则为请求服务所在进程创建binder_ref对象,指向服务进程中的binder_node;
    2. 当请求服务的进程与服务属于同一进程,则不再创建新对象,只是引用计数加1,并且修改type为BINDER_TYPE_BINDER或BINDER_TYPE_WEAK_BINDER。

    2.8.2 binder_thread_read

    binder_thread_read(...){
        ...
        //当线程todo队列有数据则执行往下执行;当线程todo队列没有数据,则进入休眠等待状态
        ret = wait_event_freezable(thread->wait, binder_has_thread_work(thread));
        ...
        while (1) {
            uint32_t cmd;
            struct binder_transaction_data tr;
            struct binder_work *w;
            struct binder_transaction *t = NULL;
            //先从线程todo队列获取事务数据
            if (!list_empty(&thread->todo)) {
                w = list_first_entry(&thread->todo, struct binder_work, entry);
            // 线程todo队列没有数据, 则从进程todo对获取事务数据
            } else if (!list_empty(&proc->todo) && wait_for_proc_work) {
                ...
            }
            switch (w->type) {
                case BINDER_WORK_TRANSACTION:
                    //获取transaction数据
                    t = container_of(w, struct binder_transaction, work);
                    break;
    
                case : ...  
            }
    
            //只有BINDER_WORK_TRANSACTION命令才能继续往下执行
            if (!t) continue;
    
            if (t->buffer->target_node) {
                ...
            } else {
                tr.target.ptr = NULL;
                tr.cookie = NULL;
                cmd = BR_REPLY; //设置命令为BR_REPLY
            }
            tr.code = t->code;
            tr.flags = t->flags;
            tr.sender_euid = t->sender_euid;
    
            if (t->from) {
                struct task_struct *sender = t->from->proc->tsk;
                //当非oneway的情况下,将调用者进程的pid保存到sender_pid
                tr.sender_pid = task_tgid_nr_ns(sender, current->nsproxy->pid_ns);
            } else {
                ...
            }
    
            tr.data_size = t->buffer->data_size;
            tr.offsets_size = t->buffer->offsets_size;
            tr.data.ptr.buffer = (void *)t->buffer->data +
                        proc->user_buffer_offset;
            tr.data.ptr.offsets = tr.data.ptr.buffer +
                        ALIGN(t->buffer->data_size,
                            sizeof(void *));
    
            //将cmd和数据写回用户空间
            put_user(cmd, (uint32_t __user *)ptr);
            ptr += sizeof(uint32_t);
            copy_to_user(ptr, &tr, sizeof(tr));
            ptr += sizeof(tr);
    
            list_del(&t->work.entry);
            t->buffer->allow_user_free = 1;
            if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) {
                ...
            } else {
                t->buffer->transaction = NULL;
                kfree(t); //通信完成则运行释放
            }
            break;
        }
    done:
        *consumed = ptr - buffer;
        if (proc->requested_threads + proc->ready_threads == 0 &&
            proc->requested_threads_started < proc->max_threads &&
            (thread->looper & (BINDER_LOOPER_STATE_REGISTERED |
             BINDER_LOOPER_STATE_ENTERED))) {
            proc->requested_threads++;
            // 生成BR_SPAWN_LOOPER命令,用于创建新的线程
            put_user(BR_SPAWN_LOOPER, (uint32_t __user *)buffer);
        }
        return 0;
    }
    

    2.9 readStrongBinder

    [-> Parcel.cpp]

    sp<IBinder> Parcel::readStrongBinder() const
    {
        sp<IBinder> val;
        //【见小节2.9.1】
        unflatten_binder(ProcessState::self(), *this, &val);
        return val;
    }
    

    2.9.1 unflatten_binder

    [-> Parcel.cpp]

    status_t unflatten_binder(const sp<ProcessState>& proc,
        const Parcel& in, sp<IBinder>* out)
    {
        const flat_binder_object* flat = in.readObject(false);
        if (flat) {
            switch (flat->type) {
                case BINDER_TYPE_BINDER:
                    // 当请求服务的进程与服务属于同一进程
                    *out = reinterpret_cast<IBinder*>(flat->cookie);
                    return finish_unflatten_binder(NULL, *flat, in);
                case BINDER_TYPE_HANDLE:
                    //请求服务的进程与服务属于不同进程【见2.9.2】
                    *out = proc->getStrongProxyForHandle(flat->handle);
                    //创建BpBinder对象
                    return finish_unflatten_binder(
                        static_cast<BpBinder*>(out->get()), *flat, in);
            }
        }
        return BAD_TYPE;
    }
    

    2.9.2 getStrongProxyForHandle

    [-> ProcessState.cpp]

    sp<IBinder> ProcessState::getStrongProxyForHandle(int32_t handle)
    {
        sp<IBinder> result;
    
        AutoMutex _l(mLock);
        //查找handle对应的资源项[2.9.3]
        handle_entry* e = lookupHandleLocked(handle);
    
        if (e != NULL) {
            IBinder* b = e->binder;
            if (b == NULL || !e->refs->attemptIncWeak(this)) {
                ...
                //当handle值所对应的IBinder不存在或弱引用无效时,则创建BpBinder对象
                b = new BpBinder(handle);
                e->binder = b;
                if (b) e->refs = b->getWeakRefs();
                result = b;
            } else {
                result.force_set(b);
                e->refs->decWeak(this);
            }
        }
        return result;
    }
    

    readStrongBinder的功能是flat_binder_object解析并创建BpBinder对象.

    2.9.3 lookupHandleLocked

    ProcessState::handle_entry* ProcessState::lookupHandleLocked(int32_t handle)
    {
        const size_t N=mHandleToObject.size();
        //当handle大于mHandleToObject的长度时,进入该分支
        if (N <= (size_t)handle) {
            handle_entry e;
            e.binder = NULL;
            e.refs = NULL;
            //从mHandleToObject的第N个位置开始,插入(handle+1-N)个e到队列中
            status_t err = mHandleToObject.insertAt(e, N, handle+1-N);
            if (err < NO_ERROR) return NULL;
        }
        return &mHandleToObject.editItemAt(handle);
    }
    

    根据handle值来查找对应的handle_entry.

    二. 总结

    请求服务(getService)过程,就是向servicemanager进程查询指定服务,当执行binder_transaction()时,会区分请求服务所属进程情况。

    1. 当请求服务的进程与服务属于不同进程,则为请求服务所在进程创建binder_ref对象,指向服务进程中的binder_node;
      • 最终readStrongBinder(),返回的是BpBinder对象;
    2. 当请求服务的进程与服务属于同一进程,则不再创建新对象,只是引用计数加1,并且修改type为BINDER_TYPE_BINDER或BINDER_TYPE_WEAK_BINDER。
      • 最终readStrongBinder(),返回的是BBinder对象的真实子类;
    Always Believe Something Beauitful Will Be Happen
  • 相关阅读:
    servlet的提交
    servlet的doPost 和doGet和web文件结构
    helloServlet
    捕鱼达人
    The 2018 ACM-ICPC China JiangSu Provincial Programming Contest I. T-shirt
    ACM-ICPC 2017 Asia Urumqi A. Coins
    Nordic Collegiate Programming Contest 2015​ B. Bell Ringing
    变量
    hiho 1050 树的直径
    ACM-ICPC 2017 Asia Urumqi G. The Mountain
  • 原文地址:https://www.cnblogs.com/Oude/p/12363348.html
Copyright © 2011-2022 走看看