思路:
由于矩阵只由(0,1)组成,所以最后的值由改变次数决定。
用二维树状数组维护改变次数,区间修改单点求值。
代码:
#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ll, ll>PLL;
typedef pair<int, int>PII;
typedef pair<double, double>PDD;
#define I_int ll
inline ll read()
{
ll x = 0, f = 1;
char ch = getchar();
while(ch < '0' || ch > '9')
{
if(ch == '-')f = -1;
ch = getchar();
}
while(ch >= '0' && ch <= '9')
{
x = x * 10 + ch - '0';
ch = getchar();
}
return x * f;
}
#define read read()
#define closeSync ios::sync_with_stdio(0);cin.tie(0);cout.tie(0)
#define multiCase int T;cin>>T;for(int t=1;t<=T;t++)
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i<(b);i++)
#define per(i,a,b) for(int i=(a);i>=(b);i--)
#define perr(i,a,b) for(int i=(a);i>(b);i--)
ll ksm(ll a, ll b, ll p)
{
ll res = 1;
while(b)
{
if(b & 1)res = res * a % p;
a = a * a % p;
b >>= 1;
}
return res;
}
const int inf = 0x3f3f3f3f;
#define PI acos(-1)
const int maxn=1100;
int lowbit(int x){
return x&-x;
}
int n,T,tr[maxn][maxn];
void update(int x,int y,int val){
for(;x<=n;x+=lowbit(x)){
for(int ty=y;ty<=n;ty+=lowbit(ty)){
tr[x][ty]+=val;
}
}
}
int qask(int x,int y){
int res=0;
for(;x;x-=lowbit(x))
for(int ty=y;ty;ty-=lowbit(ty))
res+=tr[x][ty];
return res%2;
}
int main()
{
n=read,T=read;
while(T--){
char op[2];
cin>>op;
if(op[0]=='C'){
int x1=read,y1=read,x2=read,y2=read;
update(x1,y1,1);
update(x1,y2+1,-1);
update(x2+1,y1,-1);
update(x2+1,y2+1,1);
}
else{
int x=read,y=read;
printf("%d
",qask(x,y));
}
}
return 0;
}
/*
**/