A substring of a string T is defined as:
T(i, k)=TiTi+1...Ti+k-1, 1≤i≤i+k-1≤|T|.
Given two strings A, B and one integer K, we define S, a set of triples (i, j, k):
S = {(i, j, k) | k≥K, A(i, k)=B(j, k)}.
You are to give the value of |S| for specific A, B and K.
Input
The input file contains several blocks of data. For each block, the first line contains one integer K, followed by two lines containing strings A and B, respectively. The input file is ended by K=0.
1 ≤ |A|, |B| ≤ 105
1 ≤ K ≤ min{|A|, |B|}
Characters of A and B are all Latin letters.
Output
For each case, output an integer |S|.
Sample Input
2
aababaa
abaabaa
1
xx
xx
0
Sample Output
22
5
题意:求串1和串2中所有长度 (geq k) 的相同字串个数。
思路:首先要把两个字符串连接起来,并用一个没出现的字符分隔, 假设 Sa[j] 属于串1,Sa[i ~ (j - 1)] 属于串2, 且 Height[i + 1] 到 Height[j] 单调递减且 Height[j] (geq k) ,
根据后缀数组的性质, Sa[i ~ (j - 1)] 和 Sa[j] 的贡献为 (j - i) * (Height[i] - k + 1), 所以我们可以维护一个单调递增的栈, 将所有连续递减的Height[i]压缩成一个块,
记录这个块的最小 Height 和属于串2的后缀的个数,当 Sa[i] 属于串1时,加上前面所有块的贡献,为了快速计算贡献和,要维护一个前缀和。
所以我们for两次, 一次求串1的后缀和该后缀前面所有串2后缀的贡献,一次求串2的后缀和该后缀前面所有串1后缀的贡献。
#include <cstdio>
#include <algorithm>
#include <queue>
#include <stack>
#include <string>
#include <math.h>
#include <string.h>
#include <map>
#include <iostream>
using namespace std;
const int maxn = 5e5 + 50;
const int mod = 20090717;
int INF = 1e9;
typedef long long LL;
typedef pair<int, int> pii;
#define fi first
#define se second
int Sa[maxn], Height[maxn], Tax[maxn], Rank[maxn], tp[maxn], a[maxn], n, m, minLen;
char str[maxn];
void Rsort(){
for(int i = 0; i <= m; i++) Tax[i] = 0;
for(int i = 1; i <= n; i++) Tax[Rank[tp[i]]]++;
for(int i = 1; i <= m; i++) Tax[i] += Tax[i - 1];
for(int i = n; i >= 1; i--) Sa[Tax[Rank[tp[i]]]--] = tp[i];
}
int cmp(int *f, int x, int y, int w){
if(x + w > n || y + w > n) return 0; // 注意防止越界,多组输入的时候这条必须有
return f[x] == f[y] && f[x + w] == f[y + w];
}
void Suffix(){
for(int i = 1; i <= n; i++) Rank[i] = a[i], tp[i] = i;
m = 200, Rsort();
for(int w = 1, p = 1, i; p < n; w += w, m = p){
for(p = 0, i = n - w + 1; i <= n; i++) tp[++p] = i;
for(i = 1; i <= n; i++) if(Sa[i] > w) tp[++p] = Sa[i] - w;
Rsort(), swap(Rank, tp), Rank[Sa[1]] = p = 1;
for(int i = 2; i <= n; i++) Rank[Sa[i]] = cmp(tp, Sa[i], Sa[i - 1], w) ? p : ++p;
}
int j, k = 0;
for(int i = 1; i <= n; Height[Rank[i++]] = k){
for(k = k ? k - 1 : k, j = Sa[Rank[i] - 1]; a[i + k] == a[j + k]; ++k);
}
}
int dpmi[maxn][60];
void RMQ(){
for(int i = 1; i <= n; i++){
dpmi[i][0] = Height[i];
}
for(int j = 1; (1 << j) <= n; j++){
for(int i = 1; i + (1 << j) - 1 <= n; i++){
dpmi[i][j] = min(dpmi[i][j - 1], dpmi[i + (1 << (j - 1))][j - 1]);
}
}
}
int QueryMin(int l, int r){
int k = log2(r - l + 1);
return min(dpmi[l][k], dpmi[r - (1 << k) + 1][k]);
}
int QueryLcp(int i, int j){
if(i > j) swap(i, j);
i++;
return QueryMin(i, j);
}
int Find(int i){
int le = i, ri = n;
int res = 0;
while(le <= ri){
int mid = (le + ri) >> 1;
if(QueryLcp(i, mid) >= minLen){
le = mid + 1;
res = max(res, mid);
} else {
ri = mid - 1;
}
}
return res;
}
struct qnode
{
int cnt, h;
LL sum;
} stk[maxn];
int main(int arg, char const *argv[])
{
while(1){
scanf("%d", &minLen);
if(!minLen) break;
scanf("%s", str + 1);
int len = strlen(str + 1) + 1;
str[len] = '0';
scanf("%s", str + len + 1);
n = strlen(str + 1);
for(int i = 1; i <= n; i++) a[i] = str[i];
Suffix();
LL ans = 0;
int top = 0;
for(int i = 2; i <= n; i++){
int cnt = 0;
if(Height[i] < minLen) {
top = 0;
continue;
}
while(top && Height[i] <= stk[top].h) {
cnt += stk[top--].cnt;
}
if(Sa[i - 1] > len) cnt++;
stk[++top].cnt = cnt;
stk[top].h = Height[i];
stk[top].sum = stk[top - 1].sum + (stk[top].h - minLen + 1) * stk[top].cnt;
if(Sa[i] <= len) ans += stk[top].sum;
}
top = 0;
for(int i = 2; i <= n; i++){
int cnt = 0;
if(Height[i] < minLen) { // 这步必须有
top = 0;
continue;
}
while(top && Height[i] <= stk[top].h) {
cnt += stk[top--].cnt;
}
if(Sa[i - 1] <= len) cnt++;
stk[++top].cnt = cnt;
stk[top].h = Height[i];
stk[top].sum = stk[top - 1].sum + (stk[top].h - minLen + 1) * stk[top].cnt;
if(Sa[i] > len) ans += stk[top].sum;
}
printf("%I64d
", ans);
}
return 0;
}