OJ 1177 1178 1179
一.电路图A
第一问,容易看出$右拐次数=左拐次数+4$,$左拐+右拐=n$,所以$右拐=n/2-2$,相当于$C_{n}^{n/2-2}$
第二问,总个数除去最左端,最右端,最上方,最下方的电阻,整个电路被分成$4$段,每一段都有偶数个电阻,答案就是将$n$分成$4$个偶数的情况,相当于将$n/2$分成任意数的情况,用隔板法,答案就是$C_{n/2-1}^{3}$,排除旋转的影响,答案还要除以$4$。
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <deque> #include <string> using namespace std; inline long long read(){ long long ans = 0, f = 1; char ch = getchar(); while(!isdigit(ch)) f *= (ch == '-') ? -1 : 1, ch = getchar(); do ans = (ans << 1) + (ans << 3) + (ch ^ 48), ch = getchar(); while(isdigit(ch)); return ans * f; } const int MOD = 1e9+7, MAXN = 1e7 + 1; int fac[MAXN], inv[MAXN]; int pow(int a,int p){ int ans = 1; while(p){ if(p & 1) ans = (long long)ans * a % MOD; a = (long long)a * a % MOD, p >>= 1; } return ans; } inline int C(int n,int m){ return (long long)fac[n] * inv[m] % MOD * inv[n-m] % MOD; } int main(){ int n = read(), ans1, ans2; fac[0] = 1; for(int i=1; i<=n; i++) fac[i] = (long long)fac[i-1] * i % MOD; inv[n] = pow(fac[n], MOD-2); for(int i=n-1; i>=0; i--) inv[i] = (long long)inv[i+1] * (i+1) % MOD; ans1 = C(n, n/2-2); ans2 = (long long)C(n/2+1, 3) * n % MOD * pow(4, MOD-2) % MOD; printf("%d %d", ans1, ans2); return 0; }
二.电路图B
区间修改,区间查询,一看就是线段树,关键在于合并标记如何合并。
可将一个标记记为$frac{ax+b}{cx+d}$,用四个数表示为${a,b,c,d}$,串联一个电阻就是${0,R,0,1}$,并联一个电阻就是${R,0,1,R}$
最关键是mix操作,将${a,b,c,d}$和${i,j,k,p}$合成为${ai+cj,bi+dj,ak+cp,bk+dp}$,最终就转化为线段树加标记的问题了。
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> using namespace std; long long read(){ long long ans = 0, f = 1; char ch = getchar(); while(ch < '0' || ch > '9') f *= (ch == '-') ? -1 : 1, ch = getchar(); do ans = ((ans << 1) + (ans << 3) + (ch ^ 48)), ch = getchar(); while(ch >= '0' && ch <= '9'); return ans * f; } const int MAXN = 250001, MAXM = 250001; struct sign{double a, b, c, d;}; struct Segment{ int l, r; double maxNum, minNum; sign add; bool isSigned; }seg[MAXN*4]; int a[MAXN]; void change(int x,sign fa){ sign t = seg[x].add; seg[x].isSigned = true; double a, b, c, d; a = t.a * fa.a + t.c * fa.b; b = t.b * fa.a + t.d * fa.b; c = t.a * fa.c + t.c * fa.d; d = t.b * fa.c + t.d * fa.d; seg[x].add = (sign){1, b/a, c/a, d/a}; seg[x].maxNum = (seg[x].maxNum * fa.a + fa.b) / (seg[x].maxNum * fa.c + fa.d); seg[x].minNum = (seg[x].minNum * fa.a + fa.b) / (seg[x].minNum * fa.c + fa.d); } void spread(int x){ if(seg[x].isSigned){ change(x*2, seg[x].add); change(x*2+1, seg[x].add); seg[x].isSigned = false; seg[x].add = (sign){1, 0, 0, 1}; } } void build(int l,int r,int x=1){ seg[x].l = l, seg[x].r = r; seg[x].add = (sign){1, 0, 0, 1}; if(l == r){ seg[x].maxNum = seg[x].minNum = a[l]; return; } int mid = (l + r) >> 1; build(l, mid, x*2); build(mid+1, r, x*2+1); seg[x].maxNum = max(seg[x*2].maxNum, seg[x*2+1].maxNum); seg[x].minNum = min(seg[x*2].minNum, seg[x*2+1].minNum); } void point(int l,int r,sign vis,int x=1){ if(l <= seg[x].l && seg[x].r <= r){ change(x, vis); return; } spread(x); if(seg[x*2].r >= l) point(l, r, vis, x*2); if(seg[x*2+1].l <= r) point(l, r, vis, x*2+1); seg[x].maxNum = max(seg[x*2].maxNum, seg[x*2+1].maxNum); seg[x].minNum = min(seg[x*2].minNum, seg[x*2+1].minNum); } double ask(int l,int r,int type,int x=1){ if(l <= seg[x].l && seg[x].r <= r) return (type == 1) ? seg[x].maxNum : seg[x].minNum; spread(x); double ans = (type == 1) ? 0 : 1e9; if(seg[x*2].r >= l) (type == 1) ? ans = max(ans, ask(l, r, type, x*2)) : ans = min(ans, ask(l, r, type, x*2)); if(seg[x*2+1].l <= r) (type == 1) ? ans = max(ans, ask(l, r, type, x*2+1)) : ans = min(ans, ask(l, r, type, x*2+1)); return ans; } int main(){ int n = read(); for(int i=1; i<=n; i++) a[i] = read(); build(1, n); int m = read(); for(int i=1; i<=m; i++){ int op = read(), l = read(), r = read(); if(op == 1) printf("%.10lf ", ask(l, r, 1)); else if(op == 2) printf("%.10lf ", ask(l, r, 2)); else{ int R = read(); if(op == 3) point(l, r, (sign){1, R, 0, 1}); else point(l, r, (sign){R, 0, 1, R}); } } return 0; }
三.电路图C:(全网首发)
大概题意:给你一张图,用k种颜色给图染色,保证相邻两个顶点不染同一种颜色,求染色方案数的表达式。
乍一看这道题可能无从下手,但经过简单的计算(可以试试数学课上排列组合的题目)发现最特别的情况就是几个点涂相同颜色的情况,那么就从全集中枚举涂相同颜色的集合,若最后枚举出来有$p$个集合,就会对答案产生$k(k-1)(k-2)……(k-p+1)$的贡献($p$个集合之间颜色互不相同),当然在枚举集合的时候要判断集合之间的点是否有连边。
这样,你就得到了$40$分!
#include <iostream> #include <cstdio> #include <cstring> using namespace std; long long read(){ long long ans = 0, f = 1; char ch = getchar(); while(ch < '0' || ch > '9') f *= (ch == '-') ? -1 : 1, ch = getchar(); do ans = ((ans << 1) + (ans << 3) + (ch ^ 48)), ch = getchar(); while(ch >= '0' && ch <= '9'); return ans * f; } const int SIZE = 18; struct poly{ int conf[SIZE+1]; poly(){memset(conf, 0, sizeof(conf));} poly operator * (poly x){ poly ans; for(int i=0; i<=SIZE; i++) for(int j=0; j<=SIZE-i; j++) ans.conf[i+j] += conf[i] * x.conf[j]; return ans; } poly operator + (poly x){ poly ans; for(int i=0; i<=SIZE; i++) ans.conf[i] = conf[i] + x.conf[i]; return ans; } }; const int MAXN = 19; poly fac[MAXN], ans; int g[MAXN][MAXN], n, m; bool judge(int vis){ for(int i=0; i<n; i++) for(int j=0; j<n; j++) if((vis & (1<<i)) && (vis & (1<<j)) && g[i][j]) return false; return true; } void dfs(int vis,int deep){ if(!vis){ ans = ans + fac[deep]; return; } int x = vis & (-vis); vis ^= x; for(int s=vis; ; s=(s-1)&vis){ if(judge(s^x)) dfs(vis^s, deep+1); if(!s) break; } } int main(){ n = read(), m = read(); for(int i=1; i<=n; i++){ fac[i].conf[1] = 1; fac[i].conf[0] = 1-i; if(i != 1) fac[i] = fac[i-1] * fac[i]; } for(int i=1; i<=m; i++){ int x = read(), y = read(); g[x][y] = g[y][x] = true; } dfs((1<<n)-1, 0); int len = SIZE; while(ans.conf[len] == 0) len--; for(int i=0; i<=len; i++) printf("%d ", ans.conf[i]); return 0; }
因为一看数据规模就是成倍增长的,也就是说如果你优化了$O(n)$的复杂度你就可以多过3,4个点,首先当你枚举完时不要马上加到$ans$中,其次用状态压缩辅助判断集合是否合法。
期望得分:100,实际得分:70
#include <iostream> #include <cstdio> #include <cstring> using namespace std; long long read(){ long long ans = 0, f = 1; char ch = getchar(); while(ch < '0' || ch > '9') f *= (ch == '-') ? -1 : 1, ch = getchar(); do ans = ((ans << 1) + (ans << 3) + (ch ^ 48)), ch = getchar(); while(ch >= '0' && ch <= '9'); return ans * f; } const int SIZE = 18; struct poly{ int conf[SIZE+1]; poly(){memset(conf, 0, sizeof(conf));} poly operator * (poly x){ poly ans; for(int i=0; i<=SIZE; i++) for(int j=0; j<=SIZE-i; j++) ans.conf[i+j] += conf[i] * x.conf[j]; return ans; } poly operator + (poly x){ poly ans; for(int i=0; i<=SIZE; i++) ans.conf[i] = conf[i] + x.conf[i]; return ans; } }; const int MAXN = 19; poly fac[MAXN], ans; int g[MAXN], n, m, cnt[MAXN]; int valid[1<<(MAXN-1)]; bool judge(int vis){ if(valid[vis] != -1) return valid[vis]; for(int i=0; i<n; i++) if((vis & (1<<i)) && (vis & g[i])) return valid[vis] = false; return valid[vis] = true; } void dfs(int vis,int deep){ if(!vis){cnt[deep]++; return;} int x = vis & (-vis); vis ^= x; for(int s=vis; ; s=(s-1)&vis){ if(judge(s^x)) dfs(vis^s, deep+1); if(!s) break; } } int main(){ memset(valid, -1, sizeof(valid)); n = read(), m = read(); for(int i=1; i<=n; i++){ fac[i].conf[1] = 1; fac[i].conf[0] = 1-i; if(i != 1) fac[i] = fac[i-1] * fac[i]; } for(int i=1; i<=m; i++){ int x = read(), y = read(); g[x] |= (1<<y), g[y] |= (1<<x); } dfs((1<<n)-1, 0); poly t; for(int i=1; i<=n; i++){ t.conf[0] = cnt[i]; ans = ans + t * fac[i]; } int len = SIZE; while(ans.conf[len] == 0) len--; for(int i=0; i<=len; i++) printf("%d ", ans.conf[i]); return 0; }
为什么呢,我发现我时间复杂度的估计有误,因为在$dfs$的时候枚举到了重复的$vis$,导致最后答案并不是成倍增长。其次$dfs$其实也有重复,对于一个$vis$,可以将接下来的搜索对答案的贡献保存下来(想象$dfs(vis,1)$和$dfs(vis,2)$之间贡献相差了多少呢?其实就是一个$k$而已),所以可以用记忆化搜索,将vis对答案的贡献用多项式保存下来,转移的时候只需把系数都左移一位(十进制的)即可。
时间复杂度:$O(nB_n)->O(n2^n)$,$B_n$是贝尔数,就是斯特林数的一层的和,如果不用$dp$那么一个图理论能分成多少个集合时间复杂度就是多少。
#include <iostream> #include <cstdio> #include <cstring> using namespace std; long long read(){ long long ans = 0, f = 1; char ch = getchar(); while(ch < '0' || ch > '9') f *= (ch == '-') ? -1 : 1, ch = getchar(); do ans = ((ans << 1) + (ans << 3) + (ch ^ 48)), ch = getchar(); while(ch >= '0' && ch <= '9'); return ans * f; } const int SIZE = 18; struct poly{ int conf[SIZE+1]; poly(){memset(conf, 0, sizeof(conf));} poly operator * (poly x){ poly ans; for(int i=0; i<=SIZE; i++) for(int j=0; j<=SIZE-i; j++) ans.conf[i+j] += conf[i] * x.conf[j]; return ans; } poly operator + (poly x){ poly ans; for(int i=0; i<=SIZE; i++) ans.conf[i] = conf[i] + x.conf[i]; return ans; } }; const int MAXN = 19; poly fac[MAXN], ans, dp[1<<(MAXN-1)]; int g[MAXN], n, m; int valid[1<<(MAXN-1)], isCount[1<<(MAXN-1)]; bool judge(int vis){ if(valid[vis] != -1) return valid[vis]; for(int i=0; i<n; i++) if((vis & (1<<i)) && (vis & g[i])) return valid[vis] = false; return valid[vis] = true; } poly dfs(int vis){ if(isCount[vis]) return dp[vis]; int x = vis & (-vis), rest = vis ^ x; poly cnt; for(int s=rest; ; s=(s-1)&rest){ if(judge(s^x)) cnt = cnt + dfs(rest^s); if(!s) break; } for(int i=SIZE; i>=1; i--) cnt.conf[i] = cnt.conf[i-1]; cnt.conf[0] = 0, isCount[vis] = true; return dp[vis] = cnt; } int main(){ memset(valid, -1, sizeof(valid)); n = read(), m = read(); for(int i=1; i<=n; i++){ fac[i].conf[1] = 1; fac[i].conf[0] = 1-i; if(i != 1) fac[i] = fac[i-1] * fac[i]; } for(int i=1; i<=m; i++){ int x = read(), y = read(); g[x] |= (1<<y), g[y] |= (1<<x); } poly t, cnt; isCount[0] = true, dp[0].conf[0] = 1; cnt = dfs((1<<n)-1); for(int i=1; i<=n; i++){ t.conf[0] = cnt.conf[i]; ans = ans + t * fac[i]; } int len = SIZE; while(ans.conf[len] == 0) len--; for(int i=0; i<=len; i++) printf("%d ", ans.conf[i]); return 0; }