CCF T1
分析只有当n=1或n=2或n=5时才会买不完,除此之外尽量买一套,剩余情况直接暴力枚举吧
#include <iostream> #include <cstdio> #include <cstring> #define LD long double using namespace std; long long read(){ long long ans = 0, f = 1; char ch = getchar(); while(ch < '0' || ch > '9') f *= (ch == '-') ? -1 : 1, ch = getchar(); do ans = ((ans << 1) + (ans << 3) + (ch ^ 48)), ch = getchar(); while(ch >= '0' && ch <= '9'); return ans * f; } int main(){ int n = read(), a = 0, b = 0, c = 0; a = b = c = n / 14, n %= 14; if(n == 1 || n == 2 || n == 5){ if(!a){ printf("-1"); return 0; } n += 14, a--, b--, c--; } int a2 = -a-1, b2 = -b-1, c2 = -c-1; for(int i=0; i<=n; i+=7) for(int j=0; i+j<=n; j+=4) for(int k=0; i+j+k<=n; k+=3) if(i + j + k == n && i/7+j/4+k/3 > a2+b2+c2) a2 = i / 7, b2 = j / 4, c2 = k / 3; printf("%d %d %d", a+a2, b+b2, c+c2); return 0; }
CCF T2
裸的五边形数定理应用,打出模板就完了
#include <iostream> #include <cstdio> #include <cstring> #define LD long double using namespace std; long long read(){ long long ans = 0, f = 1; char ch = getchar(); while(ch < '0' || ch > '9') f *= (ch == '-') ? -1 : 1, ch = getchar(); do ans = ((ans << 1) + (ans << 3) + (ch ^ 48)), ch = getchar(); while(ch >= '0' && ch <= '9'); return ans * f; } const int MAXN = 100005; long long f[MAXN], Dp[MAXN]; int main(){ int n = read(), MOD = read(); for(int i=1; f[f[0]] <= n; i++){ f[++f[0]] = i * (3 * i - 1) / 2; f[++f[0]] = i * (3 * i + 1) / 2; } Dp[0] = 1; for(int i=1; i<=n; i++){ for(int j=1; j<=f[0] && f[j]<=i; j++) Dp[i] = (Dp[i] + MOD + Dp[i-f[j]] * (((j - 1) % 4 <= 1) ? 1 : -1)) % MOD; } printf("%d", Dp[n]); return 0; }
CCF T3
矩阵乘法,第a个矩阵val[i][j]表示从i到j用a次魔法的花费,快速幂即可。第1个矩阵可以通过枚举边O(n^2m)时间复杂度初始化
#include <iostream> #include <cstdio> #include <cstring> using namespace std; long long read(){ long long ans = 0, f = 1; char ch = getchar(); while(ch < '0' || ch > '9') f *= (ch == '-') ? -1 : 1, ch = getchar(); do ans = ((ans << 1) + (ans << 3) + (ch ^ 48)), ch = getchar(); while(ch >= '0' && ch <= '9'); return ans * f; } const int MAXN = 101, MAXM = 2501; struct Matrix{ int size; long long value[MAXN][MAXN]; void normal(){ for(int i=1; i<=size; i++) for(int j=1; j<=size; j++) value[i][j] = (i == j) ? 0 : 1e15; } void operator *= (Matrix &other){ long long ans[MAXN][MAXN]; memset(ans, 127, sizeof(ans)); for(int i=1; i<=size; i++) for(int j=1; j<=size; j++) for(int k=1; k<=size; k++) ans[i][j] = min(ans[i][j], value[i][k] + other.value[k][j]); for(int i=1; i<=size; i++) for(int j=1; j<=size; j++) value[i][j] = ans[i][j]; } void operator ^= (long long n){ Matrix unit = (*this); this->normal(); while(n){ if(n & 1) (*this) *= unit; unit *= unit, n >>= 1; } } }g; int U[MAXM], V[MAXM], C[MAXM]; long long Dp[MAXN][MAXN]; int main(){ int N = read(), M = read(), K = read(); g.size = N; for(int i=1; i<=N; i++) for(int j=1; j<=N; j++) Dp[i][j] = g.value[i][j] = (i == j) ? 0 : 1e15; for(int i=1; i<=M; i++){ U[i] = read(), V[i] = read(), C[i] = read(); Dp[U[i]][V[i]] = C[i]; } for(int k=1; k<=N; k++) for(int i=1; i<=N; i++) for(int j=1; j<=N; j++) Dp[i][j] = min(Dp[i][j], Dp[i][k] + Dp[k][j]); if(!K){ printf("%lld", Dp[1][N]); return 0; } for(int i=1; i<=N; i++) for(int j=1; j<=N; j++) for(int k=1; k<=M; k++) g.value[i][j] = min(g.value[i][j], Dp[i][U[k]] + Dp[V[k]][j] - C[k]); g ^= K; printf("%lld", g.value[1][N]); return 0; }
test
树链剖分,主要难点在于op=3时的操作,设dfs时根为1,当前根为root,求的是x的子树,分为3种情况
1.x=root,即求root的子树即可
2.x在root到1的路径上上,这种最麻烦,需要用整个树的权减去x的儿子中朝向root那个儿子son的树的权,son可以通过root来找
3.其它情况就求x的子树即可
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; int read(){ int ans = 0, f = 1; char ch = getchar(); while(ch < '0' || ch > '9') f *= (ch == '-') ? -1 : 1, ch = getchar(); do ans = ((ans << 1) + (ans << 3) + (ch ^ 48)), ch = getchar(); while(ch >= '0' && ch <= '9'); return ans * f; } const int MAXN = 100005, LOGN = 17; struct G{ int head[MAXN], last[MAXN<<1], next[MAXN<<1], lineNum; void add(int x,int y){ lineNum++, next[lineNum] = head[x], last[lineNum] = y, head[x] = lineNum; } }g; int val[MAXN], dep[MAXN], size[MAXN], son[MAXN], fa[MAXN][LOGN+1], id[MAXN], top[MAXN]; struct BIT{ int val[MAXN]; void add(int pos,int x){ for(int i=pos; i<MAXN; i+=i&(-i)) val[i] += x; } int query(int pos){ int ans = 0; for(int i=pos; i; i-=i&(-i)) ans += val[i]; return ans; } inline int query(int l,int r){ return query(r) - query(l - 1); } }bit; void dfs1(int x,int faNum){ dep[x] = dep[faNum] + 1, size[x] = 1, fa[x][0] = faNum; for(int i=1; i<=LOGN; i++) fa[x][i] = fa[fa[x][i-1]][i-1]; for(int l=g.head[x]; l; l=g.next[l]){ int y = g.last[l]; if(y == faNum) continue; dfs1(y, x), size[x] += size[y]; if(size[y] > size[son[x]]) son[x] = y; } } void dfs2(int x,int topNum){ id[x] = ++id[0], top[x] = topNum; if(son[x]) dfs2(son[x], topNum); for(int l=g.head[x]; l; l=g.next[l]){ int y = g.last[l]; if(y != fa[x][0] && y != son[x]) dfs2(y, y); } } int sum(int x,int y){ int ans = 0; while(top[x] != top[y]){ if(dep[top[x]] < dep[top[y]]) swap(x, y); ans += bit.query(id[top[x]], id[x]); x = fa[top[x]][0]; } if(dep[x] > dep[y]) swap(x, y); ans += bit.query(id[x], id[y]); return ans; } inline int LCA(int x,int y){ if(dep[x] < dep[y]) swap(x, y); for(int i=LOGN; i>=0; i--) if(dep[fa[x][i]] >= dep[y]) x = fa[x][i]; if(x == y) return x; for(int i=LOGN; i>=0; i--) if(fa[x][i] != fa[y][i]) x = fa[x][i], y = fa[y][i]; return fa[x][0]; } inline int LCA(int x,int y,int root){ int lx = LCA(x, root), ly = LCA(y, root); if(lx == ly) return LCA(x, y); return (dep[lx] > dep[ly]) ? lx : ly; } int main(){ int N = read(), Q = read(); for(int i=1; i<N; i++){ int x = read(), y = read(); g.add(x, y), g.add(y, x); } for(int i=1; i<=N; i++) val[i] = read(); dfs1(1, 0); dfs2(1, 1); for(int i=1; i<=N; i++) bit.add(id[i], val[i]); int root = 1; for(int i=1; i<=Q; i++){ int op = read(), x = read(); if(op == 1) root = x; else if(op == 2){ int v = read(); bit.add(id[x], v - val[x]); val[x] = v; }else if(op == 3){ if(x == root) printf("%d ", bit.query(1, N)); else if(id[root] <= id[x] && id[x] <= id[root] + size[root] - 1) printf("%d ", bit.query(id[x], id[x] + size[x] - 1)); else if(id[x] <= id[root] && id[root] <= id[x] + size[x] - 1){ int temp = root; for(int i=LOGN; i>=0; i--) if(dep[fa[temp][i]] > dep[x]) temp = fa[temp][i]; printf("%d ", bit.query(1, N) - bit.query(id[temp], id[temp] + size[temp] - 1)); }else printf("%d ", bit.query(id[x], id[x] + size[x] - 1)); }else if(op == 4){ int y = read(); int lca = LCA(x, y, root); printf("%d ", sum(x, lca) + sum(y, lca) - val[lca]); } } return 0; }