zoukankan      html  css  js  c++  java
  • Crash的数字表格

    前言

    题三号

    题目

    洛谷

    讲解

    (sum_{i=1}^nsum_{j=1}^mfrac{i*j}{gcd(i,j)})

    (sum_{i=1}^nsum_{j=1}^msum_{d|i,d|j,gcd(i/d,j/d)=1}frac{i*j}{d})

    (sum_{d=1}^{min(n,m)}dsum_{i=1}^{lfloorfrac{n}{d} floor}sum_{j=1}^{lfloorfrac{m}{d} floor}[gcd(i,j)=1]*i*j)

    (f(n,m)=sum_{i=1}^{n}sum_{j=1}^{m}[gcd(i,j)=1]*i*j)

    (sum_{d=1}^{min(n,m)}sum_{d|i}^nsum_{d|j}^mmu(d)i*j)

    (sum_{d=1}^{min(n,m)}mu(d)*d^2sum_{i=1}^{lfloorfrac{n}{d} floor}sum_{j=1}^{lfloorfrac{m}{d} floor}i*j)

    (g(n,m)=sum_{i=1}^nsum_{j=1}^mi*j=frac{n*(n+1)}{2}*frac{m*(m+1)}{2})

    (f(n,m)=sum_{d=1}^{min(n,m)}mu(d)*d^2*g(n,m))

    前半段可以用前缀和,然后可以数论分块,后面的 (g(n,m)) 可以 (O(1))

    然后我们代回最原始的式子

    (sum_{d=1}^{min(n,m)}d*f(lfloorfrac{n}{d} floor,lfloorfrac{m}{d} floor))

    同样也是数论分块!

    所以这道题就是数论分块套数论分块

    代码

    int s[MAXN],mu[MAXN],prime[MAXN],pn;
    bool vis[MAXN];
    void sieve(int x)
    {
    	s[1] = mu[1] = 1;
    	for(register int i = 2;i <= x;++ i)	
    	{
    		if(!vis[i]) prime[++pn] = i,mu[i] = -1;
    		for(int j = 1;j <= pn && i * prime[j] <= x;++ j)
    		{
    			vis[i * prime[j]] = 1;
    			if(i % prime[j] == 0) break;
    			mu[i * prime[j]] = -mu[i];
    		}
    		s[i] = (s[i-1] + 1ll * mu[i] * i * i % MOD + MOD) % MOD;
    	}
    }
    int g(int x,int y){return (1ll * x * (x+1) / 2 % MOD) * (1ll * y * (y+1) / 2 % MOD) % MOD;}
    int f(int x,int y)
    {
    	int ret = 0;
    	if(x > y) swap(x,y);
    	for(int l = 1,r;l <= x;l = r+1)
    	{
    		r = Min(x/(x/l),y/(y/l));
    		ret = (ret + 1ll * (s[r] - s[l-1]) * g(x/l,y/l)) % MOD;
    	}
    	return ret;
    }
    
    int main()
    {
    //	freopen(".in","r",stdin);
    //	freopen(".out","w",stdout);
    	n = Read(); m = Read();
    	if(n > m) swap(n,m);
    	sieve(n);
    	for(int l = 1,r;l <= n;l = r+1)
    	{
    		int L = n/l,R = m/l;
    		r = Min(n/L,m/R);
    		ans = (ans + 1ll * (r-l+1) * (l+r) / 2 % MOD * f(L,R)) % MOD;
    	}
    	Put((ans + MOD) % MOD);
    	return 0;
    }
    
  • 相关阅读:
    js Math对象
    extjs 获取Dom对象
    easyui validatebox 验证集合
    Ext.Ajax.request与form.submit的用法区别
    js获取url参数值
    【原创】extjs4做的grid,带分页,搜索
    SqlServer2005数据库同步
    【原创】jquery实现动态多组图片切换
    easyui表单数据验证
    对象模型图【OMD】阅读指南
  • 原文地址:https://www.cnblogs.com/PPLPPL/p/14279685.html
Copyright © 2011-2022 走看看