zoukankan      html  css  js  c++  java
  • 三维高斯随机向量归一化为单位向量后与任意方向的夹角的概率分布

    I have to assume incident angle is gaussian distributed, and use uncertainty propagation rule.

    I= F(O,A) = arccos(<O,A>/|A|)

    where I is the incident angle, A= [a,b,c] is the surface normal before normalization, Σ is [σa,σb,σc], O is the camera pose vector. <> is inner product symbol

    The preciseness of this method depends on the ratio between sigma term and partial derivative term. It is relatively precise when sigma term is smaller than partial derivative term.

    Experiment

    let surface normal N be a random vector

    let uncertainty of N be sigma = N.*(rand(1,3)*0.1+0.1)

    let camera pose be an random vector

    figure: ratio between estimated σI and the real σI from 1000000 points simulation. A result from 1000 trial experiment.

    和monte carlo的对照看来效果并不理想

    误差传递公式用的是一阶泰勒展开

    https://zh.wikipedia.org/wiki/%E8%AF%AF%E5%B7%AE%E4%BC%A0%E6%92%AD

    二阶貌似是这样:

    http://stats.stackexchange.com/questions/13004/propagation-of-error-using-2nd-order-taylor-series

    实验以后发现二阶分量小到忽略不计,无法改善

    难道是求导错了?

    lalala
  • 相关阅读:
    对线程的理解
    C#-设计模式-策略模式
    C#-设计模式-观察者模式
    C#-设计模式-模板方法
    C#-设计模式-适配器模式
    C#-设计模式-代理模式
    C#-设计模式-装饰模式
    C#-设计模式-简单工厂
    C#-设计模式-单例模式
    DotNet Core2.1 编写自己的中间件和后台服务
  • 原文地址:https://www.cnblogs.com/Pallashadow/p/4987658.html
Copyright © 2011-2022 走看看