zoukankan      html  css  js  c++  java
  • 三维高斯随机向量归一化为单位向量后与任意方向的夹角的概率分布

    I have to assume incident angle is gaussian distributed, and use uncertainty propagation rule.

    I= F(O,A) = arccos(<O,A>/|A|)

    where I is the incident angle, A= [a,b,c] is the surface normal before normalization, Σ is [σa,σb,σc], O is the camera pose vector. <> is inner product symbol

    The preciseness of this method depends on the ratio between sigma term and partial derivative term. It is relatively precise when sigma term is smaller than partial derivative term.

    Experiment

    let surface normal N be a random vector

    let uncertainty of N be sigma = N.*(rand(1,3)*0.1+0.1)

    let camera pose be an random vector

    figure: ratio between estimated σI and the real σI from 1000000 points simulation. A result from 1000 trial experiment.

    和monte carlo的对照看来效果并不理想

    误差传递公式用的是一阶泰勒展开

    https://zh.wikipedia.org/wiki/%E8%AF%AF%E5%B7%AE%E4%BC%A0%E6%92%AD

    二阶貌似是这样:

    http://stats.stackexchange.com/questions/13004/propagation-of-error-using-2nd-order-taylor-series

    实验以后发现二阶分量小到忽略不计,无法改善

    难道是求导错了?

    lalala
  • 相关阅读:
    C语言面试题——寻找错误
    C语言的声明解释的在线工具——cdecl
    C语言面试题——指针运算
    const 指针与指向const的指针
    C语言复杂声明解释
    poj1248
    poj1750
    poj1484
    poj1853
    poj1575
  • 原文地址:https://www.cnblogs.com/Pallashadow/p/4987658.html
Copyright © 2011-2022 走看看