zoukankan      html  css  js  c++  java
  • hackerrank Similar Pair

    传送门

    Problem Statement

    You are given a tree where each node is labeled from 1 to n. How many similar pairs(S) are there in this tree?

    A pair (A,B) is a similar pair if the following are true:

    • node A is the ancestor of node B
    • abs(AB)T

    Input format: 
    The first line of the input contains two integers, n and T. This is followed by n1 lines, each containing two integers si and ei where node si is a parent to node ei.

    Output format: 
    Output a single integer which denotes the number of similar pairs in the tree.

    Constraints: 
    1n100000 
    0Tn 
    1siei n

    Sample Input:

    5 2
    3 2
    3 1
    1 4
    1 5
    

    Sample Output:

    4
    

    Explanation: 
    The similar pairs are: (3, 2) (3, 1) (3, 4) (3, 5).

    You can have a look at the tree image here

    -------------------------------------------------------------
    Solution:
    题目给出一棵有根树,要求统计其中满足以下条件的点对(A, B)的数目
    (1) A是B的祖先(但A不能等于B,即A应是B的合法(proper)祖先)
    (2)abs(A-B)<=T(即两点编号之差的绝对值应不大于T)
    --------------------------------------------------------
    解法不难想,类似于树形DP,DFS遍历这棵有根树,以后序(或者说后序遍历)将各个顶点的编号逐一放到集合中。在进入以顶点u为根的子树时,先查询当前集合中有多少节点v满足 abs(v-u)<=T,遍历完这棵子树后在查询一次,由于新添进集合的都是u的后代,所以两次结果相减便是符合条件的点对(u,x)的数目。对每个节点都做类似的查询结果加起来就是答案。
    --------------------------------------------------------------
    至此,问题归结为如何维护这个集合,显然树状数组(BIT)是最合适的
    #include <bits/stdc++.h>
    using namespace std;
    int T, n;
    const int N(1e5+5);
    int bit[N];
    int sum(int x){
        int s=0;
        while(x){
            s+=bit[x];
            x-=x&-x;
        }
        return s;    //error-prone
    }
    void add(int x){
        while(x<=n){
            bit[x]++;
            x+=x&-x;
        }
    }
    int get_ans(int x){
        int l=max(x-T-1, 0);
        int r=min(n, x+T);
        return sum(r)-sum(l);
    }
    int par[N];
    vector<int> g[N];
    long long ans;
    void dfs(int u){
        int tmp=get_ans(u);
        for(int i=0; i<g[u].size(); i++){
            int &v=g[u][i];
            dfs(v);
        }
        ans+=get_ans(u)-tmp;
        add(u);
    }
    int main(){
        //freopen("in", "r", stdin);
        cin>>n>>T;
        for(int i=1, u, v; i<n; i++){
            cin>>u>>v;
            par[v]=u;
            g[u].push_back(v);
        }
        int root=1;
        while(par[root])
            root=par[root];
        dfs(root);
        cout<<ans<<endl;
    }

    --------------------------------------------

    我们在考虑能否用C++ STL中的 set实现这个集合

    显然我们需要支持3种操作

    1. 插入,set OK

    2.查询集合中大于x的数有多少个

    3.查询集合中小于x的数有多少个

    下面的资料摘自C++ Primer (5th. edition)

    P. 330

    Table 9.2 Contianer Operations

    Type Aliases

    difference_type Signed integral type big enough to hold the distance between two iterators

    ------------------------------------------------------------------------------------------------------------
    我们知道set和map都支持upper_bound(),lower_bound(),可尝试用这两个函数来实现上述后两个查询。
    比如我们想查询集合s中在[L, R]范围内的数有多少个,试着写成
    set<int> s;
    int f(int l, int r){
        return s.upper_bound(r)-s.lower_bound(l);
    }

    但这是行不通的,编译时报错:

    :no match for ‘operator-’ (operand types are ‘std::set<int>: :iterator {aka std::_Rb_tree_const_iterator<int>}’ and ‘std::set<int>::iterator {aka std::_Rb_tree_const_iterator<int>}’)

    因为set<int>::iterator不支持-(减法)

    ------------------------------------------------

    只能写成

    set<int> s;
    int f(int l, int r){
        auto b=s.lower_bound(l), e=s.upper_bound(r);
        int res=0;
        while(b!=e){    //use != rather than <
            ++b;
            ++res;
        }
        return res;
    }

    但这样写复杂度是O(n),不能承受。

    Bjarne Stroustrup TC++PL (4th. edition) P.954

    The reason to use != rather than < for testing whether we have reached the end is partially because that is

    the more precise statement of what we testing for and partially because only random-access iterators support <.

    ----------------------------------------------------------

     
     
     
  • 相关阅读:
    Markdown 常用语法总结
    appium python实例脚本1
    MAC OS环境下搭建基于Python语言的appium自动化测试环境
    python发送邮件
    webdriver常用函数总结
    webdriver元素定位
    selenium python实例脚本1
    SSH使用密钥登录并禁止密码登录
    MAC OS环境下搭建基于Python语言的Selenium2自动化测试环境
    在liunx系统安装负载生成器(Load Generator)
  • 原文地址:https://www.cnblogs.com/Patt/p/4826576.html
Copyright © 2011-2022 走看看