zoukankan      html  css  js  c++  java
  • 【纪中集训2019.3.20】河

    题目

    描述

    给出(n)条河流,每条河流是形式为(k_{i}x+b_{i})的一次函数且只有(x)轴正半轴的部分;

    河流的污染部分和另外一条河流的干净部分交汇,干净的部分会被污染;

    有若干个工厂要建在(b_{i})处,问有多少种方案使得所有的河流在无穷远处被污染;

    答案对(1e9+7)取模

    范围

    $1 le N le 5 imes 10^5 , |k_{i}|,|b_{i}| le 10^9 $

    保证(b_{i})互不相同;

    题解

    • 需要先找到可以被一条河流污染的所以河流

    • 首先(b_{j}<b_{i}且k_{j}>k_{i}) 或者(b_{j}>b_{i}且k_{j}<k_{i}) 可以被直接污染;

    • 对于每一条起源在(i)下方的(b_{j}<b_{i}且k_{j}>k_{i})河流(j) ,在河流(i)上方的部分会额外污染(b_{l}>b_{i}且k_{l}<k_{i})的河流

    • 这样在下方我们就只需要考虑最大的(k_{j})即可;

    • 同理在上方只需要考虑最小的(k_{j})

    • 所以污染一条河流意味着污染一个按(k)排序的区间;

    • 剩下的就是线段覆盖,直接前缀和优化即可;

    • (不知道为什么不按左端点排序也可以(AC));

      #include<bits/stdc++.h>
      #define mod 1000000007
      using namespace std;
      const int N=500010;
      int n,m,sub[N],tot,rk[N],L[N],R[N],c[N];
      vector<int>g[N];
      char gc(){
      	static char*p1,*p2,s[1000000];
      	if(p1==p2)p2=(p1=s)+fread(s,1,1000000,stdin);
      	return(p1==p2)?EOF:*p1++;
      }
      int rd(){
      	int x=0,f=1;char c=gc();
      	while(c<'0'||c>'9'){if(c=='-')f=-1;c=gc();}
      	while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+c-'0',c=gc();
      	return x*f;
      }
      struct P{int x,y,id;}p[N];
      bool cmpy(const P&A,const P&B){return A.y==B.y?A.x<B.x:A.y<B.y;}
      bool cmpx(const P&A,const P&B){return A.x<B.x;}
      void inc(int&x,int y){x+=y;if(x>=mod)x-=mod;}
      void add(int x,int y){for(++x;x<=n+1;x+=x&-x)inc(c[x],y);}
      int ask(int x){int re=0;for(++x;x;x-=x&-x)inc(re,c[x]);return re;}
      int main(){
      	freopen("river.in","r",stdin);
      	freopen("river.out","w",stdout);
      	n=rd();
      	for(int i=1;i<=n;++i)p[i].x=rd(),p[i].y=rd(),p[i].id=i;
      	sort(p+1,p+n+1,cmpy);
      	for(int i=1;i<=n;++i)rk[p[i].id]=i;
      	sort(p+1,p+n+1,cmpx);
      	R[0]=0;for(int i=1;i<=n;++i)R[i]=max(R[i-1],rk[p[i].id]);
      	L[n+1]=n+1;for(int i=n;i;--i)L[i]=min(L[i+1],rk[p[i].id]);
      	for(int i=1;i<=n;++i)g[R[i]].push_back(L[i]);
      	add(0,1);
      	for(int i=1;i<=n;++i)
      	for(int j=0;j<(int)g[i].size();++j){
      		int l=g[i][j],tmp=ask(i);
      		if(l>1)tmp=(tmp-ask(l-2)+mod)%mod;
      		add(i,tmp);
      	}
      	int ans=(ask(n)-ask(n-1)+mod)%mod;
      	cout<<ans<<endl;
      	return 0;
      }
      
  • 相关阅读:
    8-21模拟赛解题报告
    8-20模拟赛解题报告
    8-19模拟赛解题报告
    8-18模拟赛解题报告
    8-27复习(写题)报告
    [省赛训练(DP)]Course Selection System
    Trie(字典树)的基本操作与应用(一般与字符串前缀相关)
    [算法学习]欧拉筛
    构造函数运行的机制
    js基本数据类型之间的转换
  • 原文地址:https://www.cnblogs.com/Paul-Guderian/p/10574021.html
Copyright © 2011-2022 走看看