zoukankan      html  css  js  c++  java
  • CodeForces 446B

     DZY Loves Modification

    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    As we know, DZY loves playing games. One day DZY decided to play with a n × m matrix. To be more precise, he decided to modify the matrix with exactly k operations.

    Each modification is one of the following:

    1. Pick some row of the matrix and decrease each element of the row by p. This operation brings to DZY the value of pleasure equal to the sum of elements of the row before the decreasing.
    2. Pick some column of the matrix and decrease each element of the column by p. This operation brings to DZY the value of pleasure equal to the sum of elements of the column before the decreasing.

    DZY wants to know: what is the largest total value of pleasure he could get after performing exactly k modifications? Please, help him to calculate this value.

    Input

    The first line contains four space-separated integers n, m, k and p (1 ≤ n, m ≤ 103; 1 ≤ k ≤ 106; 1 ≤ p ≤ 100).

    Then n lines follow. Each of them contains m integers representing aij (1 ≤ aij ≤ 103) — the elements of the current row of the matrix.

    Output

    Output a single integer — the maximum possible total pleasure value DZY could get.

    Examples

    input
    2 2 2 2
    1 3
    2 4
    output
    11
    input
    2 2 5 2
    1 3
    2 4
    output
    11

    Note

    For the first sample test, we can modify: column 2, row 2. After that the matrix becomes:


    1 1
    0 0

    For the second sample test, we can modify: column 2, row 2, row 1, column 1, column 2. After that the matrix becomes:


    -3 -3
    -2 -2

    题意:

    给定n行m列的矩阵 k次操作,一个常数p,ans = 0;对于每次操作,可以任选一行或一列, 则ans += 这行(列)的数字和,然后这行(列)上的每个数字都-=p

     1 //2016.8.19
     2 #include<iostream>
     3 #include<cstdio>
     4 #include<cstring>
     5 #include<algorithm>
     6 #include<queue>
     7 #define ll __int64   
     8 #define inf 999999999
     9 
    10 using namespace std;
    11 
    12 ll rsum[1005], csum[1005], rres[1000005], cres[1000005];
    13 priority_queue<ll> pq1;
    14 priority_queue<ll> pq2;
    15 
    16 int main()
    17 {
    18     ll n, m, k, p;//被数据恶心到了,这行类型改成ll才过
    19     ll tmp, val;
    20     while(cin>>n>>m>>k>>p)
    21     {
    22         memset(rsum, 0, sizeof(rsum));
    23         memset(csum, 0, sizeof(csum));
    24         memset(rres, 0, sizeof(rres));
    25         memset(cres, 0, sizeof(cres));
    26         for(int i =0; i < n; i++)
    27         {
    28             for(int j = 0; j < m; j++)
    29             {
    30                 scanf("%I64d", &val);
    31                 rsum[i] += val;//rsum[i]表示第i行之和
    32                 csum[j] += val;//csum[i]表示第i列之和
    33             }
    34         }
    35         while(!pq1.empty())pq1.pop();
    36         for(int i = 0; i < n; i++)
    37         {
    38             pq1.push(rsum[i]);
    39         }
    40           for(int i = 1; i <= k; i++)
    41         {
    42             tmp = pq1.top();
    43             pq1.pop();
    44             rres[i] = rres[i-1]+tmp;//rres[i]表示选了i行的值
    45             tmp-=p*m;
    46             pq1.push(tmp);
    47         }
    48         while(!pq2.empty())pq2.pop();
    49         for(int i = 0; i < m; i++)
    50         {
    51             pq2.push(csum[i]);
    52         }
    53         for(int i = 1; i <= k; i++)
    54         {
    55             tmp = pq2.top();
    56             pq2.pop();
    57             cres[i] = cres[i-1]+tmp;//cres[i]表示选了i列的值
    58             tmp-=p*n;
    59             pq2.push(tmp);
    60         }
    61         ll happy = inf;
    62         happy = -happy*happy;
    63         for(int i = 0; i <= k; i++)
    64               happy = max(happy, rres[i]+cres[k-i]-p*i*(k-i));
    65         cout<<happy<<endl;    
    66     }
    67 
    68     return 0;
    69 }
  • 相关阅读:
    springMVC-1
    8-IO总结
    7-RandomAccessFile 随机流
    6-对象流(对象的序列化)
    正则表达式语法手册,以及一些实例
    JavaScript的屏幕对象
    js常用正则表达式表单验证代码
    使用 CSS3 实现超炫的 Loading(加载)动画效果
    ajax处理跨域有几种方式
    javascript实现图片延迟加载方法汇总(三种方法)
  • 原文地址:https://www.cnblogs.com/Penn000/p/5786757.html
Copyright © 2011-2022 走看看