zoukankan      html  css  js  c++  java
  • CodeForces 446B

     DZY Loves Modification

    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    As we know, DZY loves playing games. One day DZY decided to play with a n × m matrix. To be more precise, he decided to modify the matrix with exactly k operations.

    Each modification is one of the following:

    1. Pick some row of the matrix and decrease each element of the row by p. This operation brings to DZY the value of pleasure equal to the sum of elements of the row before the decreasing.
    2. Pick some column of the matrix and decrease each element of the column by p. This operation brings to DZY the value of pleasure equal to the sum of elements of the column before the decreasing.

    DZY wants to know: what is the largest total value of pleasure he could get after performing exactly k modifications? Please, help him to calculate this value.

    Input

    The first line contains four space-separated integers n, m, k and p (1 ≤ n, m ≤ 103; 1 ≤ k ≤ 106; 1 ≤ p ≤ 100).

    Then n lines follow. Each of them contains m integers representing aij (1 ≤ aij ≤ 103) — the elements of the current row of the matrix.

    Output

    Output a single integer — the maximum possible total pleasure value DZY could get.

    Examples

    input
    2 2 2 2
    1 3
    2 4
    output
    11
    input
    2 2 5 2
    1 3
    2 4
    output
    11

    Note

    For the first sample test, we can modify: column 2, row 2. After that the matrix becomes:


    1 1
    0 0

    For the second sample test, we can modify: column 2, row 2, row 1, column 1, column 2. After that the matrix becomes:


    -3 -3
    -2 -2

    题意:

    给定n行m列的矩阵 k次操作,一个常数p,ans = 0;对于每次操作,可以任选一行或一列, 则ans += 这行(列)的数字和,然后这行(列)上的每个数字都-=p

     1 //2016.8.19
     2 #include<iostream>
     3 #include<cstdio>
     4 #include<cstring>
     5 #include<algorithm>
     6 #include<queue>
     7 #define ll __int64   
     8 #define inf 999999999
     9 
    10 using namespace std;
    11 
    12 ll rsum[1005], csum[1005], rres[1000005], cres[1000005];
    13 priority_queue<ll> pq1;
    14 priority_queue<ll> pq2;
    15 
    16 int main()
    17 {
    18     ll n, m, k, p;//被数据恶心到了,这行类型改成ll才过
    19     ll tmp, val;
    20     while(cin>>n>>m>>k>>p)
    21     {
    22         memset(rsum, 0, sizeof(rsum));
    23         memset(csum, 0, sizeof(csum));
    24         memset(rres, 0, sizeof(rres));
    25         memset(cres, 0, sizeof(cres));
    26         for(int i =0; i < n; i++)
    27         {
    28             for(int j = 0; j < m; j++)
    29             {
    30                 scanf("%I64d", &val);
    31                 rsum[i] += val;//rsum[i]表示第i行之和
    32                 csum[j] += val;//csum[i]表示第i列之和
    33             }
    34         }
    35         while(!pq1.empty())pq1.pop();
    36         for(int i = 0; i < n; i++)
    37         {
    38             pq1.push(rsum[i]);
    39         }
    40           for(int i = 1; i <= k; i++)
    41         {
    42             tmp = pq1.top();
    43             pq1.pop();
    44             rres[i] = rres[i-1]+tmp;//rres[i]表示选了i行的值
    45             tmp-=p*m;
    46             pq1.push(tmp);
    47         }
    48         while(!pq2.empty())pq2.pop();
    49         for(int i = 0; i < m; i++)
    50         {
    51             pq2.push(csum[i]);
    52         }
    53         for(int i = 1; i <= k; i++)
    54         {
    55             tmp = pq2.top();
    56             pq2.pop();
    57             cres[i] = cres[i-1]+tmp;//cres[i]表示选了i列的值
    58             tmp-=p*n;
    59             pq2.push(tmp);
    60         }
    61         ll happy = inf;
    62         happy = -happy*happy;
    63         for(int i = 0; i <= k; i++)
    64               happy = max(happy, rres[i]+cres[k-i]-p*i*(k-i));
    65         cout<<happy<<endl;    
    66     }
    67 
    68     return 0;
    69 }
  • 相关阅读:
    "pom.xml" could not be activated because it does not exist.
    spring boot启动STS 运行报错 java.lang.NoClassDefFoundError: ch/qos/logback/classic/LoggerContext
    @SpringBootApplication cannot be resolved to a type In STS
    Maven搭建之后的设置
    自动化部署工具
    康威定律
    Thrift简介
    JVM分代通俗解释
    过滤器和监听器之间的区别
    Configuring WS-Security UsernameToken and WS-SecureConversation (Symmetric Connection Creation)
  • 原文地址:https://www.cnblogs.com/Penn000/p/5786757.html
Copyright © 2011-2022 走看看