zoukankan      html  css  js  c++  java
  • POJ1077&&HDU1043(八数码,IDA*+曼哈顿距离)

    Eight

    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 30127   Accepted: 13108   Special Judge

    Description

    The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as: 
     1  2  3  4 
    
    5 6 7 8
    9 10 11 12
    13 14 15 x

    where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle: 
     1  2  3  4    1  2  3  4    1  2  3  4    1  2  3  4 
    
    5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8
    9 x 10 12 9 10 x 12 9 10 11 12 9 10 11 12
    13 14 11 15 13 14 11 15 13 14 x 15 13 14 15 x
    r-> d-> r->

    The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively. 

    Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and 
    frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course). 

    In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three 
    arrangement. 

    Input

    You will receive a description of a configuration of the 8 puzzle. The description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus 'x'. For example, this puzzle 
     1  2  3 
    
    x 4 6
    7 5 8

    is described by this list: 

    1 2 3 x 4 6 7 5 8

    Output

    You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line.

    Sample Input

     2  3  4  1  5  x  7  6  8 

    Sample Output

    ullddrurdllurdruldr

      1 //2016.8.25
      2 #include<iostream>
      3 #include<cstdio>
      4 #include<algorithm>
      5 #include<map>
      6 
      7 using namespace std;
      8 
      9 int a[10][10], b[10], d[1000], sx, sy, deep;
     10 bool ok;
     11 map<int, bool> vis;
     12 char dir[4] = {'u', 'd', 'l', 'r'};
     13 int dx[4] = {-1, 1, 0, 0};//分别对应上下左右四个方向
     14 int dy[4] = {0, 0, -1, 1};
     15 
     16 bool solve()//求逆序对判断是否有解,偶数有解,奇数无解
     17 {
     18     int cnt = 0;
     19     for(int i = 1; i <= 9; i++)
     20       for(int j = 0; j < i; j++)
     21         if(b[i] && b[j]>b[i])
     22           cnt++;
     23     return !(cnt%2);
     24 }
     25 
     26 int Astar()//启发函数,假设每个数字可以从别的数字头上跨过去,计算到达自己应该到的位置所需要的步数,即计算该数到达其正确位置的曼哈顿距离,h为各点曼哈顿距离之和
     27 {
     28     int h = 0;
     29     for(int i = 1; i <= 3; i++)
     30         for(int j = 1; j <= 3; j++)
     31             if(a[i][j]!=0)
     32             {
     33                 int nx = (a[i][j]-1)/3;
     34                 int ny = (a[i][j]-1)%3;
     35                 h += (abs(i-nx-1)+abs(j-ny-1));
     36             }
     37     return h;
     38 }
     39 
     40 int toInt()//把矩阵转换为int型数字
     41 {
     42     int res = 0;
     43     for(int i = 1; i <= 3; i++)
     44       for(int j = 1; j <= 3; j++)
     45         res = res*10+a[i][j];
     46     return res;
     47 }
     48 
     49 void IDAstar(int x, int y, int step)
     50 {
     51     if(ok)return ;
     52     int h = Astar();
     53     if(!h && toInt()==123456780)//找到答案
     54     {
     55         for(int i = 0; i < step; i++)
     56             cout<<dir[d[i]];
     57         cout<<endl;
     58         ok = 1;
     59         return ;
     60     }
     61     if(step+h>deep)return ;//现实+理想<现状,则返回,IDA*最重要的剪枝
     62     int now = toInt();
     63     if(vis[now])return ;//如果状态已经搜过了,剪枝,避免重复搜索
     64     vis[now] = true;
     65     for(int i = 0; i < 4; i++)
     66     {
     67         int nx = x+dx[i];
     68         int ny = y+dy[i];
     69         if(nx>=1&&nx<=3&&ny>=1&&ny<=3)
     70         {
     71             d[step] = i;
     72             swap(a[x][y], a[nx][ny]);
     73             IDAstar(nx, ny, step+1);
     74             swap(a[x][y], a[nx][ny]);
     75             d[step] = 0;
     76         }
     77     }
     78     return;
     79 }
     80 
     81 int main()
     82 {
     83     char ch;
     84     while(cin >> ch)
     85     {
     86         ok = false;
     87         deep = 0;
     88         int cnt = 0;
     89         for(int i = 1; i <= 3; i++)
     90         {
     91             for(int j = 1; j <= 3; j++)
     92             {
     93                 if(i==1&&j==1);
     94                 else cin >> ch;
     95                 if(ch == 'x')
     96                 {
     97                     a[i][j] = 0;
     98                     sx = i;
     99                     sy = j;
    100                 }else
    101                   a[i][j] = ch - '0';
    102                 b[cnt++] = a[i][j];
    103             }
    104         }
    105         if(!solve())
    106         {
    107             cout<<"unsolvable"<<endl;
    108             continue;
    109         }
    110         while(!ok)
    111         {
    112             vis.clear();
    113             IDAstar(sx, sy, 0);
    114             deep++;//一层一层增加搜索的深度
    115         }
    116     }
    117 
    118     return 0;
    119 }
  • 相关阅读:
    种子销售管理需求
    三角函数
    软件人性化的体现
    三角函数
    ProductManager
    不能说的秘密
    种子销售管理需求
    JTable使用
    不能说的秘密
    设计模式(了解篇)转载
  • 原文地址:https://www.cnblogs.com/Penn000/p/5808582.html
Copyright © 2011-2022 走看看