zoukankan      html  css  js  c++  java
  • HDU3592(差分约束)

    World Exhibition

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1754    Accepted Submission(s): 886


    Problem Description

    Nowadays, many people want to go to Shanghai to visit the World Exhibition. So there are always a lot of people who are standing along a straight line waiting for entering. Assume that there are N (2 <= N <= 1,000) people numbered 1..N who are standing in the same order as they are numbered. It is possible that two or more person line up at exactly the same location in the condition that those visit it in a group.

    There is something interesting. Some like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of X (1 <= X <= 10,000) constraints describes which person like each other and the maximum distance by which they may be separated; a subsequent list of Y constraints (1 <= Y <= 10,000) tells which person dislike each other and the minimum distance by which they must be separated.

    Your job is to compute, if possible, the maximum possible distance between person 1 and person N that satisfies the distance constraints.
     

    Input

    First line: An integer T represents the case of test.

    The next line: Three space-separated integers: N, X, and Y. 

    The next X lines: Each line contains three space-separated positive integers: A, B, and C, with 1 <= A < B <= N. Person A and B must be at most C (1 <= C <= 1,000,000) apart.

    The next Y lines: Each line contains three space-separated positive integers: A, B, and C, with 1 <= A < B <= C. Person A and B must be at least C (1 <= C <= 1,000,000) apart.
     

    Output

    For each line: A single integer. If no line-up is possible, output -1. If person 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between person 1 and N.
     

    Sample Input

    1 4 2 1 1 3 8 2 4 15 2 3 4
     

    Sample Output

    19
     

    Author

    alpc20
     

     

    Source

     
    差分约束系统
    建图:
    问题询问最大值,因此差分约束求最短路。不等式全部转化成 <= 号。
    对于 dis[v] - dis[u] <= w  (u < v),从u到v建立一条权值为w的有向边。
    对于 dis[v] - dis[u] >= w  (u < v), 将不等式转换为dis[u] - dis[v] <= -w  (u < v),从v到u建立一条权值为-w的有向边。
     
    spfa找最短路。
      1 //2017-08-29
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <iostream>
      5 #include <algorithm>
      6 #include <queue>
      7 #include <stack>
      8 
      9 using namespace std;
     10 
     11 const int N = 300100;
     12 const int M = 2500100;
     13 const int INF = 0x3f3f3f3f;
     14 
     15 int head[N], tot;
     16 struct Edge{
     17     int to, next, w;
     18 }edge[M];
     19 
     20 void init(){
     21     tot = 0;
     22     memset(head, -1, sizeof(head));
     23 }
     24 
     25 void add_edge(int u, int v, int w){
     26     edge[tot].w = w;
     27     edge[tot].to = v;
     28     edge[tot].next = head[u];
     29     head[u] = tot++;
     30 }
     31 
     32 int n, m, c;
     33 bool vis[N];
     34 int dis[N], cnt[N];
     35 
     36 bool spfa(int s, int n){
     37     memset(vis, 0, sizeof(vis));
     38     memset(dis, INF, sizeof(dis));
     39     memset(cnt, 0, sizeof(cnt));
     40     vis[s] = 1;
     41     dis[s] = 0;
     42     cnt[s] = 1;
     43     deque<int> dq;
     44     dq.push_back(s);
     45     int sum = 0, len = 1;
     46     while(!dq.empty()){
     47         // LLL 优化
     48         while(dis[dq.front()]*len > sum){
     49             dq.push_back(dq.front());
     50             dq.pop_front();
     51         }
     52         int u = dq.front();
     53         sum -= dis[u];
     54         len--;
     55         dq.pop_front();
     56         vis[u] = 0;
     57         for(int i = head[u]; i != -1; i = edge[i].next){
     58             int v = edge[i].to;
     59             if(dis[v] > dis[u] + edge[i].w){
     60                 dis[v] = dis[u] + edge[i].w;
     61                 if(!vis[v]){
     62                     vis[v] = 1;
     63                     // SLF 优化
     64                     if(!dq.empty() && dis[v] < dis[dq.front()])
     65                       dq.push_front(v);
     66                     else dq.push_back(v);
     67                     sum += dis[v];
     68                     len++;
     69                     if(++cnt[v] > n)return false;
     70                 }
     71             }
     72         }
     73     }
     74     return true;
     75 }
     76 
     77 int main()
     78 {
     79     std::ios::sync_with_stdio(false);
     80     //freopen("input.txt", "r", stdin);
     81     int T, n, x, y;
     82     cin>>T;
     83     while(T--){
     84         init();
     85         cin>>n>>x>>y;
     86         int u, v, w;
     87         while(x--){
     88             cin>>u>>v>>w;
     89             add_edge(u, v, w);
     90         }
     91         while(y--){
     92             cin>>u>>v>>w;
     93             add_edge(v, u, -w);
     94         }
     95         if(spfa(1, n)){
     96             if(dis[n] == INF)cout<<-2<<endl;
     97             else cout<<dis[n]<<endl;
     98         }else cout<<-1<<endl;
     99     }
    100 
    101     return 0;
    102 }
  • 相关阅读:
    Mybatis使用map传递参数与模糊查询写法
    mybatis实现简单的crud
    普通maven项目导入mybatis依赖后找不到程序包(已解决)
    MarkDown语法学习
    CentOS 7 配置hadoop(一) 安装虚拟机(伪分布)
    CentOS 7 配置hadoop(二) 配置hdfs(伪分布)
    生成32个的字母加数字
    mysql 横变竖 竖变横
    Java实现短息验证
    spring+springmvc+mybatis+Redis的配置文件
  • 原文地址:https://www.cnblogs.com/Penn000/p/7449242.html
Copyright © 2011-2022 走看看