zoukankan      html  css  js  c++  java
  • python dlib学习(五):比对人脸

    前言
    在前面的博客中介绍了,如何使用dlib标定人脸(python dlib学习(一):人脸检测),提取68个特征点(python dlib学习(二):人脸特征点标定)。这次要在这两个工作的基础之上,将人脸的信息提取成一个128维的向量空间。在这个向量空间上,同一个人脸的更接近,不同人脸的距离更远。度量采用欧式距离,欧氏距离计算不算复杂。
    二维情况下:
    distance=(x1−x2)2+(y1−y2)2−−−−−−−−−−−−−−−−−−√
    distance=(x1−x2)2+(y1−y2)2

    三维情况下:
    distance=(x1−x2)2+(y1−y2)2+(z1−z2)2−−−−−−−−−−−−−−−−−−−−−−−−−−−−√
    distance=(x1−x2)2+(y1−y2)2+(z1−z2)2

    将其扩展到128维的情况下即可。
    通常使用的判别阈值是0.6,即如果两个人脸的向量空间的欧式距离超过了0.6,即认定不是同一个人;如果欧氏距离小于0.6,则认为是同一个人。这个距离也可以由自己定,只要效果能更好。
    实验中使用了两个模型:

    shape_predictor_68_face_landmarks.dat:
    http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2

    dlib_face_recognition_resnet_model_v1.dat:
    http://dlib.net/files/dlib_face_recognition_resnet_model_v1.dat.bz2

    文件夹目录:

    两个模型放在model文件夹中,测试图片放在faces中,图片自己随便下几张就行。

    完整工程下载链接:
    http://pan.baidu.com/s/1boCDZ7T

    程序1
    不说废话了,直接上代码。

    # -*- coding: utf-8 -*-
    import sys
    import dlib
    import cv2
    import os
    import glob

    current_path = os.getcwd() # 获取当前路径
    # 模型路径
    predictor_path = current_path + "\model\shape_predictor_68_face_landmarks.dat"
    face_rec_model_path = current_path + "\model\dlib_face_recognition_resnet_model_v1.dat"
    #测试图片路径
    faces_folder_path = current_path + "\faces\"

    # 读入模型
    detector = dlib.get_frontal_face_detector()
    shape_predictor = dlib.shape_predictor(predictor_path)
    face_rec_model = dlib.face_recognition_model_v1(face_rec_model_path)

    for img_path in glob.glob(os.path.join(faces_folder_path, "*.jpg")):
    print("Processing file: {}".format(img_path))
    # opencv 读取图片,并显示
    img = cv2.imread(img_path, cv2.IMREAD_COLOR)
    # opencv的bgr格式图片转换成rgb格式
    b, g, r = cv2.split(img)
    img2 = cv2.merge([r, g, b])

    dets = detector(img, 1) # 人脸标定
    print("Number of faces detected: {}".format(len(dets)))

    for index, face in enumerate(dets):
    print('face {}; left {}; top {}; right {}; bottom {}'.format(index, face.left(), face.top(), face.right(), face.bottom()))

    shape = shape_predictor(img2, face) # 提取68个特征点
    for i, pt in enumerate(shape.parts()):
    #print('Part {}: {}'.format(i, pt))
    pt_pos = (pt.x, pt.y)
    cv2.circle(img, pt_pos, 2, (255, 0, 0), 1)
    #print(type(pt))
    #print("Part 0: {}, Part 1: {} ...".format(shape.part(0), shape.part(1)))
    cv2.namedWindow(img_path+str(index), cv2.WINDOW_AUTOSIZE)
    cv2.imshow(img_path+str(index), img)

    face_descriptor = face_rec_model.compute_face_descriptor(img2, shape) # 计算人脸的128维的向量
    print(face_descriptor)

    k = cv2.waitKey(0)
    cv2.destroyAllWindows()
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    程序1结果

    部分打印结果:

    F:Pythonmy_dlib_codesface_recognition>python my_face_recogniton.py
    Processing file: F:Pythonmy_dlib_codesface_recognitionfacesjobs.jpg
    Number of faces detected: 1
    face 0; left 184; top 64; right 339; bottom 219
    -0.179784
    0.15487
    0.10509
    -0.0973604
    -0.19153
    0.000418252
    -0.0357536
    -0.0206766
    0.129741
    -0.0628359
    ....
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    后面的那一堆数字就是人脸在128维向量空间上的值。

    程序2
    前面只是测试了一下,把要用的值给求到了。这里我封装了一下,把比对功能实现了。没加多少东西,所以不做赘述了。

    # -*- coding: utf-8 -*-
    import sys
    import dlib
    import cv2
    import os
    import glob
    import numpy as np

    def comparePersonData(data1, data2):
    diff = 0
    # for v1, v2 in data1, data2:
    # diff += (v1 - v2)**2
    for i in xrange(len(data1)):
    diff += (data1[i] - data2[i])**2
    diff = np.sqrt(diff)
    print diff
    if(diff < 0.6):
    print "It's the same person"
    else:
    print "It's not the same person"

    def savePersonData(face_rec_class, face_descriptor):
    if face_rec_class.name == None or face_descriptor == None:
    return
    filePath = face_rec_class.dataPath + face_rec_class.name + '.npy'
    vectors = np.array([])
    for i, num in enumerate(face_descriptor):
    vectors = np.append(vectors, num)
    # print(num)
    print('Saving files to :'+filePath)
    np.save(filePath, vectors)
    return vectors

    def loadPersonData(face_rec_class, personName):
    if personName == None:
    return
    filePath = face_rec_class.dataPath + personName + '.npy'
    vectors = np.load(filePath)
    print(vectors)
    return vectors

    class face_recognition(object):
    def __init__(self):
    self.current_path = os.getcwd() # 获取当前路径
    self.predictor_path = self.current_path + "\model\shape_predictor_68_face_landmarks.dat"
    self.face_rec_model_path = self.current_path + "\model\dlib_face_recognition_resnet_model_v1.dat"
    self.faces_folder_path = self.current_path + "\faces\"
    self.dataPath = self.current_path + "\data\"
    self.detector = dlib.get_frontal_face_detector()
    self.shape_predictor = dlib.shape_predictor(self.predictor_path)
    self.face_rec_model = dlib.face_recognition_model_v1(self.face_rec_model_path)

    self.name = None
    self.img_bgr = None
    self.img_rgb = None
    self.detector = dlib.get_frontal_face_detector()
    self.shape_predictor = dlib.shape_predictor(self.predictor_path)
    self.face_rec_model = dlib.face_recognition_model_v1(self.face_rec_model_path)

    def inputPerson(self, name='people', img_path=None):
    if img_path == None:
    print('No file! ')
    return

    # img_name += self.faces_folder_path + img_name
    self.name = name
    self.img_bgr = cv2.imread(self.current_path+img_path)
    # opencv的bgr格式图片转换成rgb格式
    b, g, r = cv2.split(self.img_bgr)
    self.img_rgb = cv2.merge([r, g, b])

    def create128DVectorSpace(self):
    dets = self.detector(self.img_rgb, 1)
    print("Number of faces detected: {}".format(len(dets)))
    for index, face in enumerate(dets):
    print('face {}; left {}; top {}; right {}; bottom {}'.format(index, face.left(), face.top(), face.right(), face.bottom()))

    shape = self.shape_predictor(self.img_rgb, face)
    face_descriptor = self.face_rec_model.compute_face_descriptor(self.img_rgb, shape)
    # print(face_descriptor)
    # for i, num in enumerate(face_descriptor):
    # print(num)
    # print(type(num))

    return face_descriptor


    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    程序2结果
    测试代码1:

    import face_rec as fc
    face_rec = fc.face_recognition() # 创建对象
    face_rec.inputPerson(name='jobs', img_path='\faces\jobs.jpg') # name中写第一个人名字,img_name为图片名字,注意要放在faces文件夹中
    vector = face_rec.create128DVectorSpace() # 提取128维向量,是dlib.vector类的对象
    person_data1 = fc.savePersonData(face_rec, vector ) # 将提取出的数据保存到data文件夹,为便于操作返回numpy数组,内容还是一样的

    # 导入第二张图片,并提取特征向量
    face_rec.inputPerson(name='jobs2', img_path='\faces\jobs2.jpg')
    vector = face_rec.create128DVectorSpace() # 提取128维向量,是dlib.vector类的对象
    person_data2 = fc.savePersonData(face_rec, vector )

    # 计算欧式距离,判断是否是同一个人
    fc.comparePersonData(person_data1, person_data2)
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    如果data文件夹中已经有了模型文件,可以直接导入:

    import face_rec as fc
    face_rec = fc.face_recognition() # 创建对象
    person_data1 = fc.loadPersonData(face_rec , 'jobs') # 创建一个类保存相关信息,后面还要跟上人名,程序会在data文件中查找对应npy文件,比如这里就是'jobs.npy'
    person_data2 = fc.loadPersonData(face_rec , 'jobs2') # 导入第二张图片
    fc.comparePersonData(person_data1, person_data2) # 计算欧式距离,判断是否是同一个人
    1
    2
    3
    4
    5
    程序2结果
    Python 2.7.10 |Anaconda 2.3.0 (64-bit)| (default, May 28 2015, 16:44:52) [MSC v.1500 64 bit (AMD64)] on win32
    Type "help", "copyright", "credits" or "license" for more information.
    Anaconda is brought to you by Continuum Analytics.
    Please check out: http://continuum.io/thanks and https://binstar.org
    >>> import face_rec as fc
    >>> face_rec = fc.face_recognition()
    >>> face_rec.inputPerson(name='jobs', img_path='\faces\jobs.jpg')
    >>> vector = face_rec.create128DVectorSpace()
    Number of faces detected: 1
    face 0; left 184; top 64; right 339; bottom 219
    >>> person_data1 = fc.savePersonData(face_rec, vector )
    Saving files to :F:Pythonmy_dlib_codesface_recognitiondatajobs.npy
    >>> face_rec.inputPerson(name='jobs2', img_path='\faces\jobs2.jpg')
    >>> vector = face_rec.create128DVectorSpace()
    Number of faces detected: 1
    face 0; left 124; top 39; right 253; bottom 168
    >>> person_data2 = fc.savePersonData(face_rec, vector )
    Saving files to :F:Pythonmy_dlib_codesface_recognitiondatajobs2.npy
    >>> fc.comparePersonData(person_data1, person_data2)
    0.490491048429
    It's the same person
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    官方例程
    #!/usr/bin/python
    # The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
    #
    # This example shows how to use dlib's face recognition tool. This tool maps
    # an image of a human face to a 128 dimensional vector space where images of
    # the same person are near to each other and images from different people are
    # far apart. Therefore, you can perform face recognition by mapping faces to
    # the 128D space and then checking if their Euclidean distance is small
    # enough.
    #
    # When using a distance threshold of 0.6, the dlib model obtains an accuracy
    # of 99.38% on the standard LFW face recognition benchmark, which is
    # comparable to other state-of-the-art methods for face recognition as of
    # February 2017. This accuracy means that, when presented with a pair of face
    # images, the tool will correctly identify if the pair belongs to the same
    # person or is from different people 99.38% of the time.
    #
    # Finally, for an in-depth discussion of how dlib's tool works you should
    # refer to the C++ example program dnn_face_recognition_ex.cpp and the
    # attendant documentation referenced therein.
    #
    #
    #
    #
    # COMPILING/INSTALLING THE DLIB PYTHON INTERFACE
    # You can install dlib using the command:
    # pip install dlib
    #
    # Alternatively, if you want to compile dlib yourself then go into the dlib
    # root folder and run:
    # python setup.py install
    # or
    # python setup.py install --yes USE_AVX_INSTRUCTIONS
    # if you have a CPU that supports AVX instructions, since this makes some
    # things run faster. This code will also use CUDA if you have CUDA and cuDNN
    # installed.
    #
    # Compiling dlib should work on any operating system so long as you have
    # CMake and boost-python installed. On Ubuntu, this can be done easily by
    # running the command:
    # sudo apt-get install libboost-python-dev cmake
    #
    # Also note that this example requires scikit-image which can be installed
    # via the command:
    # pip install scikit-image
    # Or downloaded from http://scikit-image.org/download.html.

    import sys
    import os
    import dlib
    import glob
    from skimage import io

    if len(sys.argv) != 4:
    print(
    "Call this program like this: "
    " ./face_recognition.py shape_predictor_68_face_landmarks.dat dlib_face_recognition_resnet_model_v1.dat ../examples/faces "
    "You can download a trained facial shape predictor and recognition model from: "
    " http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 "
    " http://dlib.net/files/dlib_face_recognition_resnet_model_v1.dat.bz2")
    exit()

    predictor_path = sys.argv[1]
    face_rec_model_path = sys.argv[2]
    faces_folder_path = sys.argv[3]

    # Load all the models we need: a detector to find the faces, a shape predictor
    # to find face landmarks so we can precisely localize the face, and finally the
    # face recognition model.
    detector = dlib.get_frontal_face_detector()
    sp = dlib.shape_predictor(predictor_path)
    facerec = dlib.face_recognition_model_v1(face_rec_model_path)

    win = dlib.image_window()

    # Now process all the images
    for f in glob.glob(os.path.join(faces_folder_path, "*.jpg")):
    print("Processing file: {}".format(f))
    img = io.imread(f)

    win.clear_overlay()
    win.set_image(img)

    # Ask the detector to find the bounding boxes of each face. The 1 in the
    # second argument indicates that we should upsample the image 1 time. This
    # will make everything bigger and allow us to detect more faces.
    dets = detector(img, 1)
    print("Number of faces detected: {}".format(len(dets)))

    # Now process each face we found.
    for k, d in enumerate(dets):
    print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(
    k, d.left(), d.top(), d.right(), d.bottom()))
    # Get the landmarks/parts for the face in box d.
    shape = sp(img, d)
    # Draw the face landmarks on the screen so we can see what face is currently being processed.
    win.clear_overlay()
    win.add_overlay(d)
    win.add_overlay(shape)

    # Compute the 128D vector that describes the face in img identified by
    # shape. In general, if two face descriptor vectors have a Euclidean
    # distance between them less than 0.6 then they are from the same
    # person, otherwise they are from different people. Here we just print
    # the vector to the screen.
    face_descriptor = facerec.compute_face_descriptor(img, shape)
    print(face_descriptor)
    # It should also be noted that you can also call this function like this:
    # face_descriptor = facerec.compute_face_descriptor(img, shape, 100)
    # The version of the call without the 100 gets 99.13% accuracy on LFW
    # while the version with 100 gets 99.38%. However, the 100 makes the
    # call 100x slower to execute, so choose whatever version you like. To
    # explain a little, the 3rd argument tells the code how many times to
    # jitter/resample the image. When you set it to 100 it executes the
    # face descriptor extraction 100 times on slightly modified versions of
    # the face and returns the average result. You could also pick a more
    # middle value, such as 10, which is only 10x slower but still gets an
    # LFW accuracy of 99.3%.


    dlib.hit_enter_to_continue()
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    吐槽:
    dlib的确很方便,不用花多少时间就能自己做到一些目标功能。官方文档讲的很详细,很容易入门。看这个文档(dlib python api)差不多就能学会用了。导师已经安排了研究生阶段的学习任务了,后面也要忙起来了。dlib的学习虽然是我10月份才开的坑,为了善始善终我也要尽快整理完这些东西。以后要回到”泡馆”生活了。

    原文链接:https://blog.csdn.net/hongbin_xu/article/details/78390982

  • 相关阅读:
    软件测试(3)--coverage graph
    st_lab1
    数据结构与算法—单向链表
    数据结构与算法—顺序表
    Python的正则表达式(re包)
    Python的内置装饰器@property、@staticmethod、@classmethod
    Python的装饰器
    Python的生成器和迭代器
    Python变量的引用、拷贝和回收机制
    git常用命令总结
  • 原文地址:https://www.cnblogs.com/Ph-one/p/12037471.html
Copyright © 2011-2022 走看看