zoukankan      html  css  js  c++  java
  • 常用的概率分布:伯努利分布、二项式分布、多项式分布、先验概率,后验概率

    一,伯努利分布(bernouli distribution)


    又叫做0-1分布,指一次随机试验,结果只有两种。也就是一个随机变量的取值只有0和1。
    记为: 0-1分布 或B(1,p),其中 p 表示一次伯努利实验中结果为正或为1的概率。 

    概率计算:

    P(X=0)=p0P(X=1)=p1

    期望计算:

    E(X)=0p0+1p1=p

    最简单的例子就是,抛一次硬币,预测结果为正还是反。

    二,二项式分布(binomial distrubution)


    表示n次伯努利实验的结果。

    记为:X~B(n,p),其中n表示实验次数,p表示每次伯努利实验的结果为1的概率,X表示n次实验中成功的次数。
    概率计算:

    期望计算:

    例子就是,求多次抛硬币,预测结果为正面的次数。

    三,多项式分布(multinomial distribution)


    多项式分布是二项式分布的扩展,不同的是多项式分布中,每次实验有n种结果。
    概率计算:

    期望计算:

    最简单的例子就是多次抛筛子,统计各个面被掷中的次数。

    四,先验概率,后验概率,共轭分布


    先验概率和后验概率 :

      先验概率和后验概率的概念是相对的,后验的概率通常是在先验概率的基础上加入新的信息后得到的概率,所以也通常称为条件概率。比如抽奖活动,5个球中有2个球有奖,现在有五个人去抽,小名排在第三个,问题小明抽到奖的概率是多少?初始时什么都不知道,当然小明抽到奖的概率P( X = 1 ) = 2/5。但当知道第一个人抽到奖后,小明抽到奖的概率就要发生变化,P(X = 1| Y1 = 1) = 1/4。

      再比如自然语言处理中的语言模型,需要计算一个单词被语言模型产生的概率P(w)。没有看到任何语料库的时候,我们只能猜测或者平经验,或者根据一个文档中单词w的占比,来决定单词的先验概率P(w) = 1/1000。之后根据获得的文档越多,我们可以不断的更新

    。也可以写成。再比如,你去抓娃娃机,没抓之前,你也可以估计抓到的概率,大致在1/5到1/50之间,它不可能是1/1000或1/2。然后你可以通过投币,多次使用娃娃机,更据经验来修正,你对娃娃机抓到娃娃的概率推断。后验概率有时候也可以认为是不断学习修正得到的更精确,或者更符合当前情况下的概率。

    共轭分布 :

      通常我们可以假设先验概率符合某种规律或者分布,然后根据增加的信息,我们同样可以得到后验概率的计算公式或者分布。如果先验概率和后验概率的符合相同的分布,那么这种分布叫做共轭分布。共轭分布的好处是可以清晰明了的看到,新增加的信息对分布参数的影响,也即概率分布的变化规律。

     原文:https://www.cnblogs.com/tianqizhi/p/9746135.html

    参考:https://blog.csdn.net/u010138758/article/details/70158642

  • 相关阅读:
    cinder支持nfs快照
    浏览器输入URL到返回页面的全过程
    按需制作最小的本地yum源
    创建可执行bin安装文件
    RPCVersionCapError: Requested message version, 4.17 is incompatible. It needs to be equal in major version and less than or equal in minor version as the specified version cap 4.11.
    惠普IPMI登陆不上
    Linux进程状态——top,ps中看到进程状态D,S,Z的含义
    openstack-neutron基本的网络类型以及分析
    openstack octavia的实现与分析(二)原理,架构与基本流程
    flask上下文流程图
  • 原文地址:https://www.cnblogs.com/Ph-one/p/12654318.html
Copyright © 2011-2022 走看看