zoukankan      html  css  js  c++  java
  • week07 codelab02 C72

    ss

    我们要改一下backendserver的service

    因为要写几个api还要做很多操作

    我们单独写出来 然后由service来调用

    import json
    import os
    import pickle
    import random
    import redis
    import sys
    
    from bson.json_util import dumps
    from datetime import datetime
    
    # import common package in parent directory
    sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'common'))
    
    import mongodb_client
    
    
    REDIS_HOST = "localhost"
    REDIS_PORT = 6379
    
    # NEWS_TABLE_NAME = "news"
    NEWS_TABLE_NAME = "news-test"
    CLICK_LOGS_TABLE_NAME = 'click_logs'
    
    NEWS_LIMIT = 100
    NEWS_LIST_BATCH_SIZE = 10
    USER_NEWS_TIME_OUT_IN_SECONDS = 600
    
    redis_client = redis.StrictRedis(REDIS_HOST, REDIS_PORT, db=0)
    
    
    def getNewsSummariesForUser(user_id, page_num):
        page_num = int(page_num)
        begin_index = (page_num - 1) * NEWS_LIST_BATCH_SIZE
        end_index = page_num * NEWS_LIST_BATCH_SIZE
    
        # The final list of news to be returned.
        sliced_news = []
    
        if redis_client.get(user_id) is not None:
            news_digests = pickle.loads(redis_client.get(user_id))
    
            # If begin_index is out of range, this will return empty list;
            # If end_index is out of range (begin_index is within the range), this
            # will return all remaining news ids.
            sliced_news_digests = news_digests[begin_index:end_index]
            print sliced_news_digests
            db = mongodb_client.get_db()
            sliced_news = list(db[NEWS_TABLE_NAME].find({'digest':{'$in':sliced_news_digests}}))
        else:
            db = mongodb_client.get_db()
            total_news = list(db[NEWS_TABLE_NAME].find().sort([('publishedAt', -1)]).limit(NEWS_LIMIT))
            total_news_digests = map(lambda x:x['digest'], total_news)
    
            redis_client.set(user_id, pickle.dumps(total_news_digests))
            redis_client.expire(user_id, USER_NEWS_TIME_OUT_IN_SECONDS)
    
            sliced_news = total_news[begin_index:end_index]
    
    
        for news in sliced_news:
            # Remove text field to save bandwidth.
            del news['text']
            if news['publishedAt'].date() == datetime.today().date():
                news['time'] = 'today'
        return json.loads(dumps(sliced_news))
    operations.py

    具体实现

    可以自己设置这个过期时间

    我们都是下拉获得新闻 你也可以设计一个向上拉强制刷新的功能 比如向上拉触发一个函数cleanRedis来强制清空redis(类似新浪知乎)这样 即使100条获取完了没得获取了

    也能强制刷新列表(之后写吧)

     

    import json
    import os
    import pickle
    import random
    import redis
    import sys
    
    from bson.json_util import dumps
    from datetime import datetime
    
    # import common package in parent directory
    sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'common'))
    
    import mongodb_client
    
    
    REDIS_HOST = "localhost"
    REDIS_PORT = 6379
    
    # NEWS_TABLE_NAME = "news"
    NEWS_TABLE_NAME = "news-test"
    CLICK_LOGS_TABLE_NAME = 'click_logs'
    
    NEWS_LIMIT = 100
    NEWS_LIST_BATCH_SIZE = 10
    USER_NEWS_TIME_OUT_IN_SECONDS = 600
    
    redis_client = redis.StrictRedis(REDIS_HOST, REDIS_PORT, db=0)
    
    
    def getNewsSummariesForUser(user_id, page_num):
        page_num = int(page_num)
        begin_index = (page_num - 1) * NEWS_LIST_BATCH_SIZE
        end_index = page_num * NEWS_LIST_BATCH_SIZE
    
        # The final list of news to be returned.
        sliced_news = []
    
        if redis_client.get(user_id) is not None:
            news_digests = pickle.loads(redis_client.get(user_id))
    
            # If begin_index is out of range, this will return empty list;
            # If end_index is out of range (begin_index is within the range), this
            # will return all remaining news ids.
            sliced_news_digests = news_digests[begin_index:end_index]
            print sliced_news_digests
            db = mongodb_client.get_db()
            sliced_news = list(db[NEWS_TABLE_NAME].find({'digest':{'$in':sliced_news_digests}}))
        else:
            db = mongodb_client.get_db()
            total_news = list(db[NEWS_TABLE_NAME].find().sort([('publishedAt', -1)]).limit(NEWS_LIMIT))
            total_news_digests = map(lambda x:x['digest'], total_news)
    
            redis_client.set(user_id, pickle.dumps(total_news_digests))
            redis_client.expire(user_id, USER_NEWS_TIME_OUT_IN_SECONDS)
    
            sliced_news = total_news[begin_index:end_index]
    
    
        for news in sliced_news:
            # Remove text field to save bandwidth.
            del news['text']
            if news['publishedAt'].date() == datetime.today().date():
                news['time'] = 'today'
        return json.loads(dumps(sliced_news))
    operations.py

    上面代码提到的比如 lamda表达式配合map摘取新闻中的digest字段

    还有pickle对字符串序列化和反序列化

     

    配合使用

     我们写个test

    import operations
    import os
    import sys
    
    from sets import Set
    
    # import common package in parent directory
    sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'common'))
    
    # Start Redis and MongoDB before running following tests.
    
    def test_getNewsSummariesForUser_basic():
        news = operations.getNewsSummariesForUser('test', 1)
        print news
        assert len(news) > 0
        print 'test_getNewsSummariesForUser_basic passed!'
    
    def test_getNewsSummariesForUser_pagination():
        news_page_1 = operations.getNewsSummariesForUser('test', 1)
        news_page_2 = operations.getNewsSummariesForUser('test', 2)
    
        assert len(news_page_1) > 0
        assert len(news_page_2) > 0
    
        # Assert that there is no dupe news in two pages.
        digests_page_1_set = Set([news['digest'] for news in news_page_1])
        digests_page_2_set = Set([news['digest'] for news in news_page_2])
        assert len(digests_page_1_set.intersection(digests_page_2_set)) == 0
    
        print 'test_getNewsSummariesForUser_pagination passed!'
    
    if __name__ == "__main__":
        test_getNewsSummariesForUser_basic()
        test_getNewsSummariesForUser_pagination()
    operations_test.py

    下面我们来运行一下

     

     

    后端api完成让那个了

    没回到前端webserver的client的Base

    将原来的超链接换成router的link to

    同理 loginForm也要修改

    signup也是.

     然后还要在NewsPannel做一些工作 之前比较简单 只是state保存一些信息 通过loadmorenews获得更多news

     

    现在我们state除了这些 还要记录分页 总页数 加载完没有

    然后loadmorenews

    然后做个判断

    然后 还记得我们的获取新闻的api对象的webserver的server端的news.js是临时数据

    news.js吗 我们去修改一下 让他从真正的后端backendserver从数据库拿数据

    var express = require('express');
    var router = express.Router();
    
    var rpc_client = require('../rpc_client/rpc_client');
    
    /* GET news summary list. */
    router.get('/userId/:userId/pageNum/:pageNum', function(req, res, next) {
      console.log('Fetching news...');
      user_id = req.params['userId'];
      page_num = req.params['pageNum'];
    
      rpc_client.getNewsSummariesForUser(user_id, page_num, function(response) {
        res.json(response);
      });
    });
    
    /* Log news click. */
    router.post('/userId/:userId/newsId/:newsId', function(req,res, next) {
      console.log('Logging news click...');
      user_id = req.params['userId'];
      news_id = req.params['newsId'];
    
      rpc_client.logNewsClickForUser(user_id, news_id);
      res.status(200);
    });
    
    module.exports = router;
    news.js

    所以我们回去带上这两个参数

    ok

    再回到webserver  server去

    然后我们的真正的后端backend server

    具体实现

    等这些操作完成后又回到web server的server去了

    我们洗个test验证一下

    我们先将后端骑起来

     

    他说找不到这个方法

    我们去看看

     在运行

     返回空 因为没有这个userid

    下面前端和后端调通(从网页上看到效果)

    首先在web server的client先build一下(将前端页面文件传到build文件中)

    然后去server 起一个端口 npm start 就可以只开一个端口来调试了

     

  • 相关阅读:
    Hive任务优化--控制hive任务中的map数和reduce数
    qq浏览器如何全屏截图
    清华差生10年奋斗经历
    hive优化之------控制hive任务中的map数和reduce数
    Hive新功能 Cube, Rollup介绍
    Spring自定义类扫描器 ClassPathScanningCandidateComponentProvider Spring生命周期 Constructor > @PostConstruct > InitializingBean > init-method
    Spring生命周期 Constructor > @PostConstruct > InitializingBean > init-method
    ThreadGroup解读
    Java线程池ExecutorService
    @EnableAutoConfiguration(exclude={DataSourceAutoConfiguration.class})
  • 原文地址:https://www.cnblogs.com/PoeticalJustice/p/9646285.html
Copyright © 2011-2022 走看看