D. The Child and Sequence
At the children's day, the child came to Picks's house, and messed his house up.
Picks was angry at him. A lot of important things were lost, in particular the favorite sequence of Picks.
Fortunately, Picks remembers how to repair the sequence.
Initially he should create an integer array $ a[1], a[2], ..., a[n] $ .
Then he should perform a sequence of m operations. An operation can be one of the following:
$ 1. $ Print operation $ l, r $ . Picks should write down the value of $ sum_{i=l}^r a[i] $ .
$ 2. $ Modulo operation $ l, r, x $ . Picks should perform assignment $ a[i] = a[i] quad mod quad x $ for each $ i (l ≤ i ≤ r) $ .
$ 3. $ Set operation $ k, x $ . Picks should set the value of $ a[k] $ to $ x $ (in other words perform an assignment $ a[k] = x $ ).
Can you help Picks to perform the whole sequence of operations?
Input
The first line of input contains two integer: $ n, m (1 ≤ n, m ≤ 10^5) $ .
The second line contains n integers, separated by space: $ a[1], a[2], ..., a[n] (1 ≤ a[i] ≤ 10^9) $ — initial value of array elements.
Each of the next $ m $ lines begins with a number $ type (type in (1,2,3) ) $ .
- If $ type = 1 $ , there will be two integers more in the line: $ l, r (1 ≤ l ≤ r ≤ n) $ , which correspond the operation 1.
- If $ type = 2 $ , there will be three integers more in the line: $ l, r, x (1 ≤ l ≤ r ≤ n; 1 ≤ x ≤ 10^9) $ , which correspond the operation 2.
- If $ type = 3 $ , there will be two integers more in the line: $ k, x (1 ≤ k ≤ n; 1 ≤ x ≤ 10^9) $ , which correspond the operation 3.
Output
For each operation 1, please print a line containing the answer. Notice that the answer may exceed the 32-bit integer.
Examples
input1
5 5
1 2 3 4 5
2 3 5 4
3 3 5
1 2 5
2 1 3 3
1 1 3
output1
8
5
input2
10 10
6 9 6 7 6 1 10 10 9 5
1 3 9
2 7 10 9
2 5 10 8
1 4 7
3 3 7
2 7 9 9
1 2 4
1 6 6
1 5 9
3 1 10
output2
49
15
23
1
9
Note
Consider the first testcase:
- At first, $ a = (1, 2, 3, 4, 5) $ .
- After operation 1, $ a = (1, 2, 3, 0, 1) $ .
- After operation 2, $ a = (1, 2, 5, 0, 1) $ .
- At operation 3, $ 2 + 5 + 0 + 1 = 8 $ .
- After operation 4, $ a = (1, 2, 2, 0, 1) $ .
- At operation 5, $ 1 + 2 + 2 = 5 $ .
题目大意
-
给出一个序列,进行如下三种操作:
-
区间求和
-
区间每个数
膜模 $ x $ -
单点修改
-
$ n,m le 100000 $
思路
-
如果没有第二个操作的话,就是一棵简单的线段树。那么如何处理这个第二个操作呢?
-
对于一个数 $ a $ ,如果模数 $ x>a $ ,则这次取模是没有意义的,直接跳过;
如果 $ x>a/2 $ 则取模结果小于 $ a/2 $ ;如果 $ x<a/2 $ ,取模结果小于 $ x $,则也小于 $ a/2 $ -
所以对于一个数,最多只会做 $ log_a $ 次取模操作。这是可以接受的!
-
对于一个区间,维护最大值,如果模数 $ x> $ 最大值,直接跳过即可。否则继续往下像单点修改一样。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define int long long
#define N 100005
int n,m,sum[N<<2],smx[N<<2];
void build(int o,int l,int r){
if(l==r){
scanf("%lld",&sum[o]);
smx[o]=sum[o];
return;
}
int mid=l+r>>1;
build(o<<1,l,mid); build(o<<1|1,mid+1,r);
sum[o]=sum[o<<1]+sum[o<<1|1];
smx[o]=max(smx[o<<1],smx[o<<1|1]);
}
void updata(int o,int l,int r,int pos,int val){
if(l==r){
sum[o]=smx[o]=val;
return;
}
int mid=l+r>>1;
if(pos<=mid) updata(o<<1,l,mid,pos,val);
else updata(o<<1|1,mid+1,r,pos,val);
sum[o]=sum[o<<1]+sum[o<<1|1];
smx[o]=max(smx[o<<1],smx[o<<1|1]);
}
void modtify(int o,int l,int r,int L,int R,int k){
if(smx[o]<k) return;
if(l==r){
sum[o]%=k;
smx[o]=sum[o];
return;
}
int mid=l+r>>1;
if(L>mid) modtify(o<<1|1,mid+1,r,L,R,k);
else if(R<=mid) modtify(o<<1,l,mid,L,R,k);
else{
modtify(o<<1,l,mid,L,R,k);
modtify(o<<1|1,mid+1,r,L,R,k);
}
sum[o]=sum[o<<1]+sum[o<<1|1];
smx[o]=max(smx[o<<1],smx[o<<1|1]);
}
int query(int o,int l,int r,int L,int R){
if(L<=l&&r<=R) return sum[o];
int mid=l+r>>1;
if(L>mid) return query(o<<1|1,mid+1,r,L,R);
else if(R<=mid) return query(o<<1,l,mid,L,R);
else return query(o<<1,l,mid,L,R)+query(o<<1|1,mid+1,r,L,R);
}
signed main(){
scanf("%lld %lld",&n,&m);
build(1,1,n);
while(m--){
int opt,x,y;
scanf("%lld %lld %lld",&opt,&x,&y);
if(opt==1) printf("%lld
",query(1,1,n,x,y));
else if(opt==2){
int k;
scanf("%lld",&k);
modtify(1,1,n,x,y,k);
} else updata(1,1,n,x,y);
}
return 0;
}
/*
# 42611024
When 2018-09-07 14:02:33
Who PotremZ
Problem D - The Child and Sequence
Lang GNU C++11
Verdict Accepted
Time 826 ms
Memory 6300 KB
*/