zoukankan      html  css  js  c++  java
  • codeforces CF438D The Child and Sequence 线段树

    $ Rightarrow $ 戳我进CF原题

    D. The Child and Sequence


    time limit per test: 4 seconds
    memory limit per test: 256 megabytes
    input: standard input
    output: standard output

     

    At the children's day, the child came to Picks's house, and messed his house up.
    Picks was angry at him. A lot of important things were lost, in particular the favorite sequence of Picks.
     
    Fortunately, Picks remembers how to repair the sequence.
    Initially he should create an integer array $ a[1], a[2], ..., a[n] $ .
    Then he should perform a sequence of m operations. An operation can be one of the following:
     
    $ 1. $ Print operation $ l, r $ . Picks should write down the value of $ sum_{i=l}^r a[i] $ .
    $ 2. $ Modulo operation $ l, r, x $ . Picks should perform assignment $ a[i] = a[i] quad mod quad x $ for each $ i (l ≤ i ≤ r) $ .
    $ 3. $ Set operation $ k, x $ . Picks should set the value of $ a[k] $ to $ x $ (in other words perform an assignment $ a[k] = x $ ).
     
    Can you help Picks to perform the whole sequence of operations?
     

    Input

    The first line of input contains two integer: $ n, m (1 ≤ n, m ≤ 10^5) $ .
    The second line contains n integers, separated by space: $ a[1], a[2], ..., a[n] (1 ≤ a[i] ≤ 10^9) $ — initial value of array elements.
     
    Each of the next $ m $ lines begins with a number $ type (type in (1,2,3) ) $ .
     

    • If $ type = 1 $ , there will be two integers more in the line: $ l, r (1 ≤ l ≤ r ≤ n) $ , which correspond the operation 1.
    • If $ type = 2 $ , there will be three integers more in the line: $ l, r, x (1 ≤ l ≤ r ≤ n; 1 ≤ x ≤ 10^9) $ , which correspond the operation 2.
    • If $ type = 3 $ , there will be two integers more in the line: $ k, x (1 ≤ k ≤ n; 1 ≤ x ≤ 10^9) $ , which correspond the operation 3.
       

    Output

    For each operation 1, please print a line containing the answer. Notice that the answer may exceed the 32-bit integer.
     

    Examples

    input1

     5 5
     1 2 3 4 5
     2 3 5 4
     3 3 5
     1 2 5
     2 1 3 3
     1 1 3
    

    output1

     8
     5
    

    input2

     10 10
     6 9 6 7 6 1 10 10 9 5
     1 3 9
     2 7 10 9
     2 5 10 8
     1 4 7
     3 3 7
     2 7 9 9
     1 2 4
     1 6 6
     1 5 9
     3 1 10
    

    output2

     49
     15
     23
     1
     9
    

     

    Note

    Consider the first testcase:
     

    • At first, $ a = (1, 2, 3, 4, 5) $ .
    • After operation 1, $ a = (1, 2, 3, 0, 1) $ .
    • After operation 2, $ a = (1, 2, 5, 0, 1) $ .
    • At operation 3, $ 2 + 5 + 0 + 1 = 8 $ .
    • After operation 4, $ a = (1, 2, 2, 0, 1) $ .
    • At operation 5, $ 1 + 2 + 2 = 5 $ .
       

    题目大意

    • 给出一个序列,进行如下三种操作:

    • 区间求和

    • 区间每个数模 $ x $

    • 单点修改

    • $ n,m le 100000 $
       

    思路

    • 如果没有第二个操作的话,就是一棵简单的线段树。那么如何处理这个第二个操作呢?

    • 对于一个数 $ a $ ,如果模数 $ x>a $ ,则这次取模是没有意义的,直接跳过;
      如果 $ x>a/2 $ 则取模结果小于 $ a/2 $ ;如果 $ x<a/2 $ ,取模结果小于 $ x $,则也小于 $ a/2 $

    • 所以对于一个数,最多只会做 $ log_a $ 次取模操作。这是可以接受的!

    • 对于一个区间,维护最大值,如果模数 $ x> $ 最大值,直接跳过即可。否则继续往下像单点修改一样。
       

    代码

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    #define int long long
    #define N 100005
    int n,m,sum[N<<2],smx[N<<2];
    void build(int o,int l,int r){
    	if(l==r){
    		scanf("%lld",&sum[o]);
    		smx[o]=sum[o];
    		return;
    	}
    	int mid=l+r>>1;
    	build(o<<1,l,mid); build(o<<1|1,mid+1,r);
    	sum[o]=sum[o<<1]+sum[o<<1|1];
    	smx[o]=max(smx[o<<1],smx[o<<1|1]);
    }
    void updata(int o,int l,int r,int pos,int val){
    	if(l==r){
    		sum[o]=smx[o]=val;
    		return;
    	}
    	int mid=l+r>>1;
    	if(pos<=mid) updata(o<<1,l,mid,pos,val);
    	else updata(o<<1|1,mid+1,r,pos,val);
    	sum[o]=sum[o<<1]+sum[o<<1|1];
    	smx[o]=max(smx[o<<1],smx[o<<1|1]);
    }
    void modtify(int o,int l,int r,int L,int R,int k){
    	if(smx[o]<k) return;
    	if(l==r){
    		sum[o]%=k;
    		smx[o]=sum[o];
    		return;
    	}
    	int mid=l+r>>1;
    	if(L>mid) modtify(o<<1|1,mid+1,r,L,R,k);
    	else if(R<=mid) modtify(o<<1,l,mid,L,R,k);
    	else{
    		modtify(o<<1,l,mid,L,R,k);
    		modtify(o<<1|1,mid+1,r,L,R,k);
    	}
    	sum[o]=sum[o<<1]+sum[o<<1|1];
    	smx[o]=max(smx[o<<1],smx[o<<1|1]);
    }
    int query(int o,int l,int r,int L,int R){
    	if(L<=l&&r<=R) return sum[o];
    	int mid=l+r>>1;
    	if(L>mid) return query(o<<1|1,mid+1,r,L,R);
    	else if(R<=mid) return query(o<<1,l,mid,L,R);
    	else return query(o<<1,l,mid,L,R)+query(o<<1|1,mid+1,r,L,R);
    }
    signed main(){
    	scanf("%lld %lld",&n,&m);
    	build(1,1,n);
    	while(m--){
    		int opt,x,y;
    		scanf("%lld %lld %lld",&opt,&x,&y);
    		if(opt==1) printf("%lld
    ",query(1,1,n,x,y));
    		else if(opt==2){
    			int k;
    			scanf("%lld",&k);
    			modtify(1,1,n,x,y,k);
    		} else updata(1,1,n,x,y);
    	}
    	return 0;
    }
    /*
    #         42611024
    When      2018-09-07 14:02:33 
    Who       PotremZ
    Problem   D - The Child and Sequence
    Lang      GNU C++11
    Verdict   Accepted
    Time      826 ms
    Memory    6300 KB
    */
    
  • 相关阅读:
    [Effective JavaScript 笔记] 第7条:视字符串为16位的代码单元序列
    [翻译]CSS模块-未来的编码方式
    [Effective JavaScript 笔记] 第6条:了解分号插入的局限
    [Effective JavaScript 笔记] 第5条:避免对混合类型使用==运算符
    [Effective JavaScript 笔记] 第4条:原始类型优于封闭对象
    [翻译]理解CSS模块方法
    [翻译]纠正PostCSS的4大认识误区
    [翻译]Gulp.js简介
    [Effective JavaScript笔记]第3条:当心隐式的强制转换
    [翻译]在gulp构建工具中使用PostCSS
  • 原文地址:https://www.cnblogs.com/PotremZ/p/CF438D.html
Copyright © 2011-2022 走看看