题意:
给你一个初始的图,然后每次输入一个图,要求移动x最小的步数达到和初始图一样,输出路径
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8 9 x 10 12 9 10 x 12 9 10 11 12 9 10 11 12 13 14 11 15 13 14 11 15 13 14 x 15 13 14 15 x r-> d-> r->
好像有很多中方法解决这个问题:八数码的八个境界
①bfs + 康托展开+打表 /* 其他的还不会,有空去试试 - -
#include <iostream> #include <cstdio> #include <cmath> #include <cstring> #include <cstdlib> #include <queue> #include <algorithm> typedef long long ll; using namespace std; const int MAXN=362900;//最多是9!/2 int fac[]= {1,1,2,6,24,120,720,5040,40320,362880}; //康拖展开判重 // 0!1!2!3! 4! 5! 6! 7! 8! 9! bool vis[MAXN];//标记 char path[MAXN][40];//记录路径 int cantor(int s[])//康拖展开求该序列的hash值 { int sum=0; for(int i=0; i<9; i++) { int num=0; for(int j=i+1; j<9; j++) if(s[j]<s[i])num++; sum+=(num*fac[9-i-1]); } return sum+1; } struct node { int matri[10]; int position; char path[50]; int state; }; queue<node>que; char dire[5] = "dlur"; int dir[4][2] = {{-1,0},{0,1},{1,0},{0,-1}}; void bfs() { memset(vis,false,sizeof(vis)); node cur; for(int i = 0; i < 8; i++) cur.matri[i] = i+1; cur.matri[8] = 0; cur.state = 46234; cur.path[0] = ' '; cur.position = 8; que.push(cur); vis[cur.state] = true; path[cur.state][0] = ' '; while(!que.empty()) { cur = que.front(); que.pop(); int x = cur.position/3; int y = cur.position%3; for(int i = 0; i < 4; i++) { int tx = x + dir[i][0]; int ty = y + dir[i][1]; if(tx < 0 || tx > 2 || ty < 0 || ty > 2) continue; node t = cur; t.position =tx*3+ty; t.matri[cur.position] = t.matri[t.position]; t.matri[t.position] = 0; t.state =cantor(t.matri); if(!vis[t.state]) { path[t.state][0] = t.path[0] = dire[i]; int len = strlen(cur.path); for(int j = 1;j <= len+1;j++) path[t.state][j] = t.path[j] = cur.path[j-1]; vis[t.state] = true; que.push(t); } } } } char ch; int q[10]; int main() { bfs(); while(cin >> ch) { if(ch == 'x') q[0] = 0; else q[0] = ch-'0'; for(int i = 1; i < 9; i++) { cin >> ch; if(ch == 'x') q[i] = 0; else q[i] = ch-'0'; } int ans = cantor(q); // printf("%d ",ans); if(!vis[ans]) printf("unsolvable "); else { cout <<path[ans]<<endl; } } return 0; } ②双向bfs + 康拓展开+奇偶剪枝 剪枝:当x左右移动时,序列不变;上下移动时,移动2位后逆序数+2,所以奇偶性不变 双向bfs:因为扩展越大,你要搜索的部分就更多.而同时从开头和结果开始理论上来说会快很多 #include <iostream> #include <cstdio> #include <cstring> #include <ctime> #include <algorithm> #include <cmath> #include <queue> #include <map> #include <vector> typedef long long ll; using namespace std; const int MAXN=370000; int fac[]= {1,1,2,6,24,120,720,5040,40320,362880}; //康拖展开判重 // 0!1!2!3! 4! 5! 6! 7! 8! 9! int vis[MAXN];//标记 int vis2[MAXN]; int cantor(string s)//康拖展开求该序列的hash值 { int sum=0; for(int i=0; i<9; i++) { int num=0; for(int j=i+1; j<9; j++) if(s[j]<s[i])num++; sum+=(num*fac[9-i-1]); } return sum+1; } struct node { string path; int state; } From; struct node2 { int num; char ch; } pre[MAXN]; char dire2[5] = "dlur"; char dire1[5] = "urdl"; int dir[4] = {-3,1,3,-1}; void pri(int t) { if(pre[t].num == -1) return ; pri(pre[t].num); printf("%c",pre[t].ch); } void bfs(node cur) { queue<node>que1; queue<node>que2; memset(vis,0,sizeof(vis)); memset(vis2,0,sizeof(vis2)); pre[0].num = pre[1].num = pre[2].num = -1; node last,tp; vis[cantor(cur.path)] = 1; last.path ="123456780"; last.state = 8; vis2[cantor(last.path)] = 2; que1.push(From); que2.push(last); int num = 2; while(!que1.empty() && !que2.empty()) { //正向搜索 cur = que1.front(); que1.pop(); int stat = cantor(cur.path); if(vis2[stat]) { pri(vis[stat]); int k = vis2[stat]; while(pre[k].num != -1) { printf("%c",pre[k].ch); k = pre[k].num; } printf(" "); return; } for(int i = 0; i < 4; i++) { if(i==0&&cur.state<3)continue; //up if(i==1&&cur.state%3 == 2)continue; //right if(i==2&&cur.state>5)continue; //down if(i==3&&cur.state%3 == 0)continue; //left int posi = cur.state + dir[i]; tp = cur; swap(tp.path[cur.state],tp.path[posi]); int x = cantor(tp.path); if(vis[x]) continue; vis[x] = ++num; tp.state = posi; pre[num].ch = dire1[i]; pre[num].num = vis[stat]; que1.push(tp); } //反向搜索 last = que2.front(); que2.pop(); stat = cantor(last.path); if(vis[stat]) { pri(vis[stat]); int k =vis2[stat]; while(pre[k].num!=-1) { printf("%c",pre[k].ch); k=pre[k].num; } printf(" "); return ; } for(int i = 0; i < 4; i++) { if(i==0&&last.state<3)continue; if(i==1&&last.state%3==2)continue; if(i==2&&last.state>5)continue; if(i==3&&last.state%3==0)continue; int posi = last.state + dir[i]; tp = last; swap(tp.path[last.state],tp.path[posi]); int x = cantor(tp.path); if(vis2[x]) continue; vis2[x] = ++num; tp.state = posi; pre[num].ch = dire2[i]; pre[num].num = vis2[stat]; que2.push(tp); } } printf("unsolvable "); } bool check(string a) { int num = 0; for(int i = 0; i < 9; i++) { if(a[i] == '0' ) continue; for(int j = i+1; j < 9; j++) { if(a[j] == '0') continue; if(a[j] < a[i]) num++; } } if(num & 1) return true; else return false; } char ch; char a[100]; int p[10]; int main() { while(gets(a)) { int tnum = 0; int n=strlen(a); From.path=""; for(int i=0; i<n; i++) if(a[i]!=' ') { if(a[i]=='x') { From.state=tnum; From.path+='0'; } else From.path+=a[i]; tnum++; } if(check(From.path))printf("unsolvable "); else bfs(From); } return 0; } ③A*算法+康拓展开+奇偶剪枝 它把Dijkstra算法(靠近初始点的结点)和BFS算法(靠近目标点的结点)的信息块结合起来。走到终点的代价为f[n],主要由已经花费的代价g[n]和将要花费的代价h[n]决定,f[n] = g[n] + h[n],由于要找最短的路径,优先判定f[n]较小的。 而在本题中g[n]即是已经走过的步数,h[n]则是当前情况移动到-> 123456780的最小步数. #include <iostream> #include <cstdio> #include <cmath> #include <cstring> #include <cstdlib> #include <queue> #include <algorithm> typedef long long ll; using namespace std; const int MAXN=362880; int fac[]= {1,1,2,6,24,120,720,5040,40320,362880}; // 0!1!2!3! 4! 5! 6! 7! 8! 9! int vis[MAXN]; int cantor(int s[]) { int sum=0; for(int i=0; i<9; i++) { int num=0; for(int j=0; j<i; j++) if(s[j]>s[i])num++; sum+=(num*fac[i]); } return sum; } struct node2 { int pre; char ch; } pre[MAXN]; struct node { int matri[10]; int position; int have,to; int state; bool operator < (const node a)const { return have+to>a.have+a.to; } }; char dire[5] = "urdl"; int dir[4][2] = {{-1,0},{0,1},{1,0},{0,-1}}; int fx[]={2,0,0,0,1,1,1,2,2},fy[]={2,0,1,2,0,1,2,0,1}; int get_(node a) { int ans = 0; for(int i = 0; i < 3; i++) for(int j = 0; j < 3; j++){ if(a.matri[i*3+j]){ ans+=abs(i-fx[a.matri[i*3+j]])+abs(j-fy[a.matri[i*3+j]]); } } return ans; } int fina[10]; void pri(int k) { if(pre[k].pre == -1) return; pri(pre[k].pre); printf("%c",pre[k].ch); } void bfs(node cur) { priority_queue<node>que; memset(vis,0,sizeof(vis)); vis[cur.state] = 1; int tnum = 1; pre[1].pre = -1; for(int i = 0; i < 8; i++) fina[i] = i+1; fina[8] = 0; int _ans = cantor(fina); cur.have = 0; que.push(cur); while(!que.empty()) { cur = que.top(); que.pop(); int x = cur.position/3; int y = cur.position%3; int num = cur.state; if(num == _ans) { int k = vis[num]; pri(k); printf(" "); return ; } for(int i = 0; i < 4; i++) { int tx = x + dir[i][0]; int ty = y + dir[i][1]; if(tx < 0 || tx > 2 || ty < 0 || ty > 2) continue; node t = cur; t.position =tx*3+ty; t.matri[cur.position] = t.matri[t.position]; t.matri[t.position] = 0; t.have++; t.to = get_(t); t.state =cantor(t.matri); if(!vis[t.state]) { vis[t.state] = ++tnum; pre[tnum].pre = vis[num]; pre[tnum].ch = dire[i]; que.push(t); } } } printf("unsolvable "); } bool check(int a[]) { int num = 0; for(int i = 0; i < 9; i++) { if(a[i] == 0 ) continue; for(int j = i+1; j < 9; j++) { if(a[j] == 0) continue; if(a[j] < a[i]) num++; } } if(num & 1) return true; else return false; } char ch; int main() { while(cin >> ch) { node from; if(ch == 'x') { from.matri[0] = 0; from.position = 0; } else from.matri[0] = ch-'0'; for(int i = 1; i < 9; i++) { cin >> ch; if(ch == 'x') { from.matri[i] = 0; from.position = i; } else from.matri[i] = ch-'0'; } int ans = cantor(from.matri); from.state = ans; // printf("%d ",ans); if(check(from.matri)) printf("unsolvable "); else bfs(from); } return 0; }