zoukankan      html  css  js  c++  java
  • 2015 多校联赛 ——HDU5416(异或)

    CRB has a tree, whose vertices are labeled by 1, 2, …, N. They are connected by N – 1 edges. Each edge has a weight.
    For any two vertices u and v(possibly equal), f(u,v) is xor(exclusive-or) sum of weights of all edges on the path from u to v.
    CRB’s task is for given s, to calculate the number of unordered pairs (u,v) such that f(u,v) = s. Can you help him?
     
    Input
    There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
    The first line contains an integer N denoting the number of vertices.
    Each of the next N - 1 lines contains three space separated integers ab and c denoting an edge between a and b, whose weight is c.
    The next line contains an integer Q denoting the number of queries.
    Each of the next Q lines contains a single integer s.
    1 ≤ T ≤ 25
    1 ≤ N ≤ 105
    1 ≤ Q ≤ 10
    1 ≤ ab ≤ N
    0 ≤ cs ≤ 105
    It is guaranteed that given edges form a tree.

     
    Output
    For each query, output one line containing the answer.
     
    Sample Input
    1 3 1 2 1 2 3 2 3 2 3 4
     
    Sample Output
    1 1 0

    题意:
    f(u,v) =  s(从u->v的异或
    )中u,v可以有多少对

    所以f(u,v)  = f(1 , u) ^ f(1 , v)


    #include<iostream>
    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<cmath>
    #include<vector>
    #include<map>
    #include<set>
    #include<queue>
    #include<stack>
    #include<string>
    #include<algorithm>
    using namespace std;
    #define N 100050
    typedef long long ll;
    
    
    int head[N], tot;
    int num[2*N];
    int dis[N];
    
    struct edge
    {
        int v, w, next;
    } edg[2*N];
    
    void add(int u, int v, int w)
    {
        edg[tot].v = v;
        edg[tot].w = w;
        edg[tot].next = head[u];
        head[u] = tot++;
    }
    
    void dfs(int u, int fa, int val)
    {
        dis[u] = val;
        num[val]++;         //记录val的个数
        for(int i = head[u]; ~i; i = edg[i].next)
        {
            int v = edg[i].v;
            if(v == fa)
                continue;
            dfs(v, u, val^edg[i].w);
        }
    }
    int main()
    {
        int T,u,v,w,m,n;
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d",&n);
            tot = 0;
            memset(head,-1,sizeof(head));
            memset(num,0,sizeof(num));
            for(int i = 1; i < n; i++)
            {
                scanf("%d%d%d",&u,&v,&w);
                add(u,v,w);
                add(v,u,w);
            }
    
            dfs(1,-1,0);
            scanf("%d", &m);
            int s;
            for(int i = 0; i < m; i++)
            {
                scanf("%d", &s);
                int temp;
                ll ans = 0;
                for(int i = 1;i <= n;i++)
                {
                    temp = s^dis[i];
                    if(temp == dis[i])      //除去本身的那个
                        ans += num[temp]- 1;
                    else
                        ans += num[temp];
                }
                ans/=2;
                if(s == 0)   //加上自己与自己异或的情况
                    ans += n;
                printf("%I64d
    ",ans);
            }
        }
        return 0;
    }
    

      

  • 相关阅读:
    INTZ DX format
    多线程渲染
    BindVertexbuffer
    Lock flag DX
    Triple buffering and vsync
    可迭代对象和迭代器
    装饰器
    闭包函数
    名称空间和作用域
    函数对象
  • 原文地址:https://www.cnblogs.com/Przz/p/5409769.html
Copyright © 2011-2022 走看看