zoukankan      html  css  js  c++  java
  • poj 3304 直线与线段相交

    Segments
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 12161   Accepted: 3847

    Description

    Given n segments in the two dimensional space, write a program, which determines if there exists a line such that after projecting these segments on it, all projected segments have at least one point in common.

    Input

    Input begins with a number T showing the number of test cases and then, T test cases follow. Each test case begins with a line containing a positive integer n ≤ 100 showing the number of segments. After that, n lines containing four real numbers x1 y1 x2 y2 follow, in which (x1y1) and (x2y2) are the coordinates of the two endpoints for one of the segments.

    Output

    For each test case, your program must output "Yes!", if a line with desired property exists and must output "No!" otherwise. You must assume that two floating point numbers a and b are equal if |a - b| < 10-8.

    Sample Input

    3
    2
    1.0 2.0 3.0 4.0
    4.0 5.0 6.0 7.0
    3
    0.0 0.0 0.0 1.0
    0.0 1.0 0.0 2.0
    1.0 1.0 2.0 1.0
    3
    0.0 0.0 0.0 1.0
    0.0 2.0 0.0 3.0
    1.0 1.0 2.0 1.0

    Sample Output

    Yes!
    Yes!
    No!
    /*
    poj 3304 直线与线段相交
    
    给你n条线段,确定是否存在一条直线,它们的投影到上面时有公共点
    
    如果存在一个这样的直线,那么说明所有的线段能和一条直线相交
    对这条直线进行一定的旋转,必定与所有直线的端点中的至少两个相交
    所以枚举所有的端点进行判断即可
    //注意判断相同点
    
    hhh-2016-05-04 20:48:26
    */
    #include <iostream>
    #include <vector>
    #include <cstring>
    #include <string>
    #include <cstdio>
    #include <queue>
    #include <cmath>
    #include <algorithm>
    #include <functional>
    #include <map>
    using namespace std;
    #define lson  (i<<1)
    #define rson  ((i<<1)|1)
    typedef long long ll;
    const int  maxn = 40010;
    double eps = 1e-8;
    int tot;
    int n,m;
    double x1,x2,y1,y2;
    
    int sgn(double x)
    {
        if(fabs(x) < eps) return 0;
        if(x < 0)
            return -1;
        else
            return 1;
    }
    
    struct Point
    {
        double x,y;
        Point() {}
        Point(double _x,double _y)
        {
            x = _x,y = _y;
        }
        Point operator -(const Point &b)const
        {
            return Point(x-b.x,y-b.y);
        }
        double operator ^(const Point &b)const
        {
            return x*b.y-y*b.x;
        }
    };
    
    struct Line
    {
        Point s,t;
        Line() {}
        Line(Point _s,Point _t)
        {
            s = _s;
            t = _t;
        }
    };
    int tans[maxn];
    Line line[maxn];
    Point po[maxn];
    Point p;
    
    bool seg_inter_line(Line l1,Line l2)
    {
        return sgn((l2.s-l1.t) ^ (l1.s-l1.t))*sgn((l2.t-l1.t)^(l1.s-l1.t)) <= 0;
    }
    
    bool cal(Line tl)
    {
        for(int i = 0;i < n;i++)
        {
            if(!seg_inter_line(tl,line[i]))
            {
                return false;
            }
        }
        return true;
    }
    
    int main()
    {
        int T;
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d",&n);
            int flag = 0;
            tot = 0;
            if(n < 3)
                flag = 1;
            for(int i = 0; i < n; i++)
            {
                scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
                po[tot++] = Point(x1,y1);
                po[tot++] = Point(x2,y2);
                line[i] = Line(po[tot-1],po[tot-2]);
            }
            for(int i = 0; i < tot && !flag; i++)
            {
                for(int j = i+1; !flag && j < tot; j++)
                {
                    if(po[i].x == po[j].x && po[i].y == po[j].y)
                        continue;
                    if(cal(Line(po[i],po[j])))
                    {
                        flag = 1;
                        break;
                    }
                }
            }
            if(flag)
                printf("Yes!
    ");
            else
                printf("No!
    ");
        }
        return 0;
    }
    

      

  • 相关阅读:
    博客园注册成功,博客开张啦!
    Android零基础开发专题三:Android SDK帮助文档使用方法
    Android平台介绍
    Android零基础开发专题五:Activity、BroadcastReceiver、Service、Content Provider
    Android零基础开发专题四:Android 项目文件结构
    Android零基础开发专题二:Hello Android,I am coming!
    与大家分享一下我的面试经历,也算对自己的一次总结。大家有什么心得,意见都可以畅所欲言。
    分布式安装sde、oracle后,其它机器如何通过arcsde连接oracle?
    【SQLSERVER】存儲過程的寫法格式規格
    利用SQLServer复制功能实现与Oracle数据库同步(转)
  • 原文地址:https://www.cnblogs.com/Przz/p/5510310.html
Copyright © 2011-2022 走看看