zoukankan      html  css  js  c++  java
  • hdu 5738 Eureka

    Eureka

    Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 2924    Accepted Submission(s): 816


    Problem Description
    Professor Zhang draws n points on the plane, which are conveniently labeled by 1,2,...,n. The i-th point is at (xi,yi). Professor Zhang wants to know the number of best sets. As the value could be very large, print it modulo 109+7.

    A set P (P contains the label of the points) is called best set if and only if there are at least one best pair in P. Two numbers u and v (u,vP,uv) are called best pair, if for every wPf(u,v)g(u,v,w), where f(u,v)=(xuxv)2+(yuyv)2−−−−−−−−−−−−−−−−−−√ and g(u,v,w)=f(u,v)+f(v,w)+f(w,u)2.
     
    Input
    There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

    The first line contains an integer n (1n1000) -- then number of points.

    Each of the following n lines contains two integers xi and yi (109xi,yi109) -- coordinates of the i-th point.
     
    Output
    For each test case, output an integer denoting the answer.
     
    Sample Input
    3 3 1 1 1 1 1 1 3 0 0 0 1 1 0 1 0 0
     
    Sample Output
    4 3 0
    /*
    hdu 5738 Eureka
    
    problem:
    求有多少个队列,满足 f(u,v) >= g(u,v,m)
    
    solve:
    f(u,v) >= g(u,v,m)  ---->  f(u,v) >= f(u,w) + f(w,v);   f()即求两点间的距离
    所以就成了找出有多少点共线. 然后计算对best sets贡献即可.
    
    hhh-2016-08-26 19:08:41
    */
    #pragma comment(linker,"/STACK:124000000,124000000")
    #include <algorithm>
    #include <iostream>
    #include <cstdlib>
    #include <cstdio>
    #include <cstring>
    #include <vector>
    #include <math.h>
    #include <queue>
    #include <map>
    #define lson  i<<1
    #define rson  i<<1|1
    #define ll long long
    #define clr(a,b) memset(a,b,sizeof(a))
    #define scanfi(a) scanf("%d",&a)
    #define scanfl(a) scanf("%I64d",&a)
    #define key_val ch[ch[root][1]][0]
    #define inf 0x3f3f3f3f
    using namespace std;
    const ll mod = 1e9+7;
    const int maxn = 1004;
    
    ll gcd(ll a,ll b)
    {
        if(!a)
            return b;
        if(!b)
            return a;
        while(a % b != 0)
        {
            ll t = a% b;
            a = b;
            b = t;
        }
        return b;
    }
    
    struct node
    {
        ll x,y;
    } pnode[maxn];
    
    bool cmp(node a,node b)
    {
        if(a.x != b.x)
            return a.x < b.x;
        return a.y < b.y;
    }
    
    map<pair<ll,ll>,int> mp;
    ll pow_mod(ll a,ll n)
    {
        ll cnt = 1;
        if(n < 0)
            return 0;
        while(n)
        {
            if(n & 1) cnt = cnt*a%mod;
            a = a*a%mod;
            n >>= 1;
        }
        return cnt;
    }
    int main()
    {
    //    freopen("in.txt","r",stdin);
        int T,n;
        ll v,u;
        scanfi(T);
        while(T--)
        {
            scanfi(n);
            for(int i = 0; i < n; i++)
            {
                scanfl(u),scanfl(v);
                pnode[i].x = u,pnode[i].y = v;
            }
            ll ans = 0;
            sort(pnode,pnode+n,cmp);
            for(int i =0; i < n; i++)
            {
                ll cnt = 0;
                mp.clear();
                for(int j = i+1; j < n; j++)
                {
                    if(pnode[i].x == pnode[j].x && pnode[i].y == pnode[j].y)
                        cnt++;
                    else
                    {
                        ll tx = pnode[i].x - pnode[j].x;
                        ll ty = pnode[i].y - pnode[j].y;
                        ll t = gcd(tx,ty);
                        if(t)
                            mp[make_pair(tx/t,ty/t)]++;
                        else
                            mp[make_pair(tx,ty)]++;
                    }
                }
                if(cnt )
                {
                    ans = (ans+pow_mod(2,cnt)-1)%mod;
                }
                for(map<pair<ll,ll>,int>::iterator it = mp.begin();it != mp.end();it++)
                {
                    ll num = (ll)(it->second);
                    ans = (ans+pow_mod(2,cnt)*(pow_mod(2,num)-1)%mod)%mod;
                }
            }
            printf("%I64d
    ",ans);
        }
        return 0;
    }
    

      

  • 相关阅读:
    【动态规划】Column Addition @ICPC2017Tehran/upcexam5434
    【高精度&想法题】Count the Even Integers @ICPC2017HongKong/upcexam5563#Java
    【二分】Base Station Sites @ICPC2017HongKong/upcexam5559
    【想法题】Knot Puzzle @AtCoder Grand Contest 002 C/upcexam5583
    【搜索】传感器 @upcexam6023
    Unity 3D 开发 —— 脚本编程
    Kinect 开发 —— 骨骼数据与彩色影像和深度影像的对齐
    Kinect 开发 —— 杂一
    Kinect 开发 —— 面部追踪
    Kinect 开发 —— Kinect studio
  • 原文地址:https://www.cnblogs.com/Przz/p/5812326.html
Copyright © 2011-2022 走看看