zoukankan      html  css  js  c++  java
  • CodeForces 55D Beautiful numbers(数位dp)

    E - Beautiful numbers
    Time Limit:4000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u

    Description

    Volodya is an odd boy and his taste is strange as well. It seems to him that a positive integer number is beautiful if and only if it is divisible by each of its nonzero digits. We will not argue with this and just count the quantity of beautiful numbers in given ranges.

    Input

    The first line of the input contains the number of cases t (1 ≤ t ≤ 10). Each of the next t lines contains two natural numbers li and ri (1 ≤ li ≤ ri ≤ 9 ·1018).

    Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preffered to use cin (also you may use %I64d).

    Output

    Output should contain t numbers — answers to the queries, one number per line — quantities of beautiful numbers in given intervals (from li to ri, inclusively).

    Sample Input

    Input
    1
    1 9
    Output
    9
    Input
    1
    12 15
    Output
    2
    /*
    CodeForces 55D Beautiful numbers(数位dp)
    
    problem:
    问[l,r]之间有多少个能被它所包含的非零数整除
    
    solve:
    如果能这些数整除,则能被他们的最小公倍数整除. 1~9的最小公倍数为2520,所以在过程中维护lcm和这个数对2520的取余
    而且可以处理出1~9的所有lcm,离散化处理.
    
    hhh-2016-08-25 16:56:23
    */
    #pragma comment(linker,"/STACK:124000000,124000000")
    #include <algorithm>
    #include <iostream>
    #include <cstdlib>
    #include <cstdio>
    #include <cstring>
    #include <vector>
    #include <math.h>
    #include <queue>
    #include <map>
    #define lson  i<<1
    #define rson  i<<1|1
    #define ll long long
    #define clr(a,b) memset(a,b,sizeof(a))
    #define scanfi(a) scanf("%d",&a)
    #define scanfl(a) scanf("%I64d",&a)
    #define key_val ch[ch[root][1]][0]
    #define inf 0x3f3f3f3f
    using namespace std;
    const ll mod = 2520;
    const int maxn = 100010;
    int tot,t[maxn];
    ll dp[20][3000][50];
    int bin[3000];
    int cnt = 0;
    int lcm(int a,int b)
    {
        if(!a && !b)
            return 0;
        if(!a)  return b;
        if(!b)  return a;
        int ta=a,tb=b;
        while(a % b != 0)
        {
            int p = a % b;
            a = b;
            b = p;
        }
        return ta/b*tb;
    }
    
    int fin(int pos)
    {
        int l = 0,r = cnt-1;
        while(l < r)
        {
            int mid = (l+r) >> 1;
            if(bin[mid] > pos)
            {
                r = mid -1;
            }
            else if(bin[mid] == pos)
            {
                return mid;
            }
            else
                l = mid + 1;
        }
    }
    
    ll dfs(int len,int nex,int div,int flag)
    {
        if(len < 0 && div == 0)
            return 0;
        if(len < 0)
            return nex % div == 0;
        int tp = bin[div];
        if(dp[len][nex][tp] != -1 && !flag)
            return dp[len][nex][tp] ;
        ll ans = 0;
        int n = flag ? t[len] : 9;
        for(int i = 0; i <= n; i++)
        {
            int lc;
            lc = lcm(div,i);
    //        cout << lc <<" " << i <<endl;
            int ta = (nex*10+i) % mod;
            ans += dfs(len-1,ta,lc,flag && i == n);
        }
    //    cout << ans<<" "<<div<<endl;
        if(!flag)
            dp[len][nex][tp] = ans;
        return ans;
    }
    
    ll cal(ll a)
    {
        tot = 0;
        while(a)
        {
            int p = a%10LL;
            t[tot++] = p;
            a /= 10LL;
        }
        ll ans = 0;
        ans += dfs(tot-1,0,0,1);
        return ans;
    }
    ll a,b;
    int main()
    {
        int T;
        cnt = 0;
        bin[cnt++] = 0;
        for(int i = 1;i <= mod;i++)
        {
            if(mod % i == 0)
               bin[i] = cnt++;
        }
    //    freopen("in.txt","r",stdin);
        memset(dp,-1,sizeof(dp));
        scanfi(T);
    
        while(T--)
        {
            scanfl(a),scanfl(b);
            printf("%I64d
    ",cal(b) - cal(a-1));
        }
    }
    

      

  • 相关阅读:
    小波变化与小波降噪
    非正态分布数据转换成正态分布
    使用pyinstaller将pyqt5打包成exe格式
    使用PyQt5嵌入matplotlib,实现根据界面输入数值更换显示的matplotlib图形
    python异常机制、多进程与PyQt5中的QTimer、多线程
    PyQt5中使用QTimer定时刷新:当要执行可能会超过设定时间的代码
    解决pyinstaller打包sklearn等库出现的问题: 提示failed to execute script xxx
    数据分析实例-MovieLens 1M 数据集
    机器学习各类算法的优缺点
    pandas时间序列
  • 原文地址:https://www.cnblogs.com/Przz/p/5812363.html
Copyright © 2011-2022 走看看