zoukankan      html  css  js  c++  java
  • C++解析(24):抽象类和接口、多重继承

    0.目录

    1.抽象类和接口

    2.被遗弃的多重继承

    3.小结

    1.抽象类和接口

    1.1 抽象类

    面向对象中的抽象类

    • 可用于表示现实世界中的抽象概念
    • 是一种只能定义类型,而不能产生对象的类
    • 只能被继承并重写相关函数
    • 直接特征是相关函数没有完整的实现

    Shape是现实世界中各种图形的抽象概念,因此:

    • 程序中必须能够反映抽象的图形
    • 程序中通过抽象类表示图形的概念
    • 抽象类不能创建对象只能用于继承

    1.2 纯虚函数

    抽象类与纯虚函数:

    • C++语言中没有抽象类的概念
    • C++中通过纯虚函数实现抽象类
    • 纯虚函数是指只定义原型的成员函数
    • 一个C++类中存在纯虚函数就成为了抽象类

    纯虚函数的语法规则:

    示例——抽象类:

    #include <iostream>
    
    using namespace std;
    
    class Shape
    {
    public:
        virtual double area() = 0;
    };
    
    class Rect : public Shape
    {
        int ma;
        int mb;
    public:
        Rect(int a, int b)
        {
            ma = a;
            mb = b;
        }
        double area()
        {
            return ma * mb;
        }
    };
    
    class Circle : public Shape
    {
        int mr;
    public:
        Circle(int r) { mr = r; }
        double area()
        {
            return 3.14 * mr * mr;
        }
    };
    
    void area(Shape* p)
    {
        double r = p->area();
        
        cout << "r = " << r << endl;
    }
    
    int main()
    {
        Rect rect(1, 2);
        Circle circle(10);
        
        area(&rect);
        area(&circle);
        
        return 0;
    }
    

    运行结果为:

    [root@bogon Desktop]# g++ test.cpp
    [root@bogon Desktop]# ./a.out 
    r = 2
    r = 314
    
    • 抽象类只能用作父类被继承
    • 子类必须实现纯虚函数的具体功能
    • 纯虚函数被实现后成为虚函数
    • 如果子类没有实现纯虚函数,则子类成为抽象类

    1.3 接口

    满足下面条件的C++类则称为接口

    • 类中没有定义任何的成员变量
    • 所有的成员函数都是公有的
    • 所有的成员函数都是纯虚函数
    • 接口是一种特殊的抽象类

    示例——接口:

    #include <iostream>
    
    using namespace std;
    
    class Channel
    {
    public:
        virtual bool open() = 0;
        virtual void close() = 0;
        virtual bool send(char* buf, int len) = 0;
        virtual int receive(char* buf, int len) = 0;
    };
    
    int main()
    {
        return 0;
    }
    

    C++中没有真正的接口,但是C++的后续语言Java、C#直接支持接口的概念!

    2.被遗弃的多重继承

    2.1 C++中的多重继承

    C++支持编写多重继承的代码:

    • 一个子类可以拥有多个父类
    • 子类拥有所有父类的成员变量
    • 子类继承所有父类的成员函数
    • 子类对象可以当作任意父类对象使用

    多重继承的语法规则:

    2.2 多重继承的问题一

    示例——多重继承的问题一:

    #include <iostream>
    
    using namespace std;
    
    class BaseA
    {
        int ma;
    public:
        BaseA(int a) { ma = a; }
        int getA() { return ma; }
    };
    
    class BaseB
    {
        int mb;
    public:
        BaseB(int b) { mb = b; }
        int getB() { return mb; }
    };
    
    class Derived : public BaseA, public BaseB
    {
        int mc;
    public:
        Derived(int a, int b, int c) : BaseA(a), BaseB(b)
        {
            mc = c;
        }
        int getC() { return mc; }
        void print()
        {
            cout << "ma = " << getA() << ", "
                 << "mb = " << getB() << ", "
                 << "mc = " << mc << endl;
        }
    };
    
    int main()
    {
        cout << "sizeof(Derived) = " << sizeof(Derived) << endl; // 12
        
        Derived d(1, 2, 3);
        
        d.print();
        
        cout << "d.getA() = " << d.getA() << endl;
        cout << "d.getB() = " << d.getB() << endl;
        cout << "d.getC() = " << d.getC() << endl;
        
        cout << endl;
        
        BaseA* pa = &d;
        BaseB* pb = &d;
        
        cout << "pa->getA() = " << pa->getA() << endl;
        cout << "pb->getB() = " << pb->getB() << endl;
        
        cout << endl;
        
        void* paa = pa;
        void* pbb = pb;
        
        if( paa == pbb )
        {
            cout << "Pointer to the same object!" << endl; 
        }
        else
        {
            cout << "Error" << endl;
        }
        
        cout << "pa = " << pa << endl;
        cout << "pb = " << pb << endl;
        cout << "paa = " << paa << endl;
        cout << "pbb = " << pbb << endl; 
        
        return 0;
    }
    

    运行结果为:

    [root@bogon Desktop]# g++ test.cpp
    [root@bogon Desktop]# ./a.out 
    sizeof(Derived) = 12
    ma = 1, mb = 2, mc = 3
    d.getA() = 1
    d.getB() = 2
    d.getC() = 3
    
    pa->getA() = 1
    pb->getB() = 2
    
    Error
    pa = 0x7ffc9f641dc0
    pb = 0x7ffc9f641dc4
    paa = 0x7ffc9f641dc0
    pbb = 0x7ffc9f641dc4
    

    通过多重继承得到的对象可能拥有“不同的地址”!!
    解决方案:

    (其实pa和pb还是指向了同一个对象,但是指向的是同一个对象的不同位置,打个比方就是pa指向了这个对象的脑袋,pb指向了这个对象的胸口。。。)

    2.3 多重继承的问题二

    多重继承可能产生冗余的成员:

    示例——多重继承的问题二:

    #include <iostream>
    
    using namespace std;
    
    class People
    {
        string m_name;
        int m_age;
    public:
        People(string name, int age)
        {
            m_name = name;
            m_age = age;
        }
        void print()
        {
            cout << "Name = " << m_name << ", "
                 << "Age = " << m_age << endl;
        }
    };
    
    class Teacher : public People
    {
    public:
        Teacher(string name, int age) : People(name, age) { }
    };
    
    class Student : public People
    {
    public:
        Student(string name, int age) : People(name, age) { }
    };
    
    class Doctor : public Teacher, public Student
    {
    public:
        Doctor(string name, int age) : Teacher(name + "1", age + 10), Student(name + "2", age + 1) { }
    };
    
    int main()
    {
        Doctor d("Bob", 33);
        
        //d.print();
        d.Teacher::print();
        d.Student::print();
        
        return 0;
    }
    

    运行结果为:

    [root@bogon Desktop]# g++ test.cpp
    [root@bogon Desktop]# ./a.out 
    Name = Bob1, Age = 43
    Name = Bob2, Age = 34
    

    当多重继承关系出现闭合时将产生数据冗余的问题!!!!
    解决方案:虚继承

    • 虚继承能够解决数据冗余问题
    • 中间层父类不再关心顶层父类的初始化
    • 最终子类必须直接调用顶层父类的构造函数

    示例——使用虚继承解决数据冗余:

    #include <iostream>
    
    using namespace std;
    
    class People
    {
        string m_name;
        int m_age;
    public:
        People(string name, int age)
        {
            m_name = name;
            m_age = age;
        }
        void print()
        {
            cout << "Name = " << m_name << ", "
                 << "Age = " << m_age << endl;
        }
    };
    
    class Teacher : virtual public People
    {
    public:
        Teacher(string name, int age) : People(name, age) { }
    };
    
    class Student : virtual public People
    {
    public:
        Student(string name, int age) : People(name, age) { }
    };
    
    class Doctor : public Teacher, public Student
    {
    public:
        Doctor(string name, int age) : Teacher(name+"1", age), Student(name+"2", age), People(name+"3", age) { }
    };
    
    int main()
    {
        Doctor d("Delphi", 33);
        
        d.print();
        d.Teacher::print();
        d.Student::print();
        
        return 0;
    }
    

    运行结果为:

    [root@bogon Desktop]# g++ test.cpp
    [root@bogon Desktop]# ./a.out 
    Name = Delphi3, Age = 33
    Name = Delphi3, Age = 33
    Name = Delphi3, Age = 33
    

    问题:
    当架构设计中需要继承时,无法确定使用直接继承还是虚继承!!

    2.4 多重继承的问题三

    多重继承可能产生多个虚函数表

    示例——多重继承的问题三:

    #include <iostream>
    
    using namespace std;
    
    class BaseA
    {
    public:
        virtual void funcA()
        {
            cout << "BaseA::funcA()" << endl;
        }
    };
    
    class BaseB
    {
    public:
        virtual void funcB()
        {
            cout << "BaseB::funcB()" << endl;
        }
    };
    
    class Derived : public BaseA, public BaseB
    {
    };
    
    int main()
    {
        Derived d;
        BaseA* pa = &d;
        BaseB* pb = &d;
        BaseB* pbb = (BaseB*)pa;
        
        cout << "sizeof(d) = " << sizeof(d) << endl;
        
        cout << "Using pa to call funcA()..." << endl;
        pa->funcA();
        
        cout << "Using pb to call funcB()..." << endl;
        pb->funcB();
        
        cout << "Using pbb to call funcB()..." << endl;
        pbb->funcB();
        
        cout << endl;
        
        cout << "pa = " << pa << endl;
        cout << "pb = " << pb << endl;
        cout << "pbb = " << pbb << endl;
        
        return 0;
    }
    

    运行结果为:

    [root@bogon Desktop]# g++ test.cpp
    [root@bogon Desktop]# ./a.out 
    sizeof(d) = 16
    Using pa to call funcA()...
    BaseA::funcA()
    Using pb to call funcB()...
    BaseB::funcB()
    Using pbb to call funcB()...
    BaseA::funcA()
    
    pa = 0x7fffd5157c20
    pb = 0x7fffd5157c28
    pbb = 0x7fffd5157c20
    

    需要进行强制类型转换时,C++中推荐使用新式类型转换关键字!!
    解决方案:dynamic_cast

    示例——使用新式类型转换dynamic_cast关键字:

    #include <iostream>
    
    using namespace std;
    
    class BaseA
    {
    public:
        virtual void funcA()
        {
            cout << "BaseA::funcA()" << endl;
        }
    };
    
    class BaseB
    {
    public:
        virtual void funcB()
        {
            cout << "BaseB::funcB()" << endl;
        }
    };
    
    class Derived : public BaseA, public BaseB
    {
    };
    
    int main()
    {
        Derived d;
        BaseA* pa = &d;
        BaseB* pb = &d;
        BaseB* pbb = (BaseB*)pa; // oops!!
        BaseB* pbc = dynamic_cast<BaseB*>(pa);
        
        cout << "sizeof(d) = " << sizeof(d) << endl;
        
        cout << "Using pa to call funcA()..." << endl;
        pa->funcA();
        
        cout << "Using pb to call funcB()..." << endl;
        pb->funcB();
        
        cout << "Using pbb to call funcB()..." << endl;
        pbb->funcB();
        
        cout << "Using pbc to call funcB()..." << endl;
        pbc->funcB();
        
        cout << endl;
        
        cout << "pa = " << pa << endl;
        cout << "pb = " << pb << endl;
        cout << "pbb = " << pbb << endl;
        cout << "pbc = " << pbc << endl;
        
        return 0;
    }
    

    运行结果为:

    [root@bogon Desktop]# g++ test.cpp
    [root@bogon Desktop]# ./a.out 
    sizeof(d) = 16
    Using pa to call funcA()...
    BaseA::funcA()
    Using pb to call funcB()...
    BaseB::funcB()
    Using pbb to call funcB()...
    BaseA::funcA()
    Using pbc to call funcB()...
    BaseB::funcB()
    
    pa = 0x7ffcc2c27ff0
    pb = 0x7ffcc2c27ff8
    pbb = 0x7ffcc2c27ff0
    pbc = 0x7ffcc2c27ff8
    

    2.5 正确的使用多重继承

    工程开发中的“多重继承”方式:

    • 单继承某个类 + 实现(多个)接口

    示例——正确的多继承方式:

    #include <iostream>
    
    using namespace std;
    
    class Base
    {
    protected:
        int mi;
    public:
        Base(int i) { mi = i; }
        int getI() { return mi; }
        bool equal(Base* obj)
        {
            return (this == obj);
        }
    };
    
    class Interface1
    {
    public:
        virtual void add(int i) = 0;
        virtual void minus(int i) = 0;
    };
    
    class Interface2
    {
    public:
        virtual void multiply(int i) = 0;
        virtual void divide(int i) = 0;
    };
    
    class Derived : public Base, public Interface1, public Interface2
    {
    public:
        Derived(int i) : Base(i) { }
        void add(int i) { mi += i; }
        void minus(int i) { mi -= i; }
        void multiply(int i) { mi *= i; }
        void divide(int i)
        {
            if( i != 0 ) { mi /= i; }
        }
    };
    
    int main()
    {
        Derived d(100);
        Derived* p = &d;
        Interface1* pInt1 = &d;
        Interface2* pInt2 = &d;
        
        cout << "p->getI() = " << p->getI() << endl;    // 100
        
        pInt1->add(10);
        pInt2->divide(11);
        pInt1->minus(5);
        pInt2->multiply(8);
        
        cout << "p->getI() = " << p->getI() << endl;    // 40
        
        cout << endl;
        
        cout << "pInt1 == p : " << p->equal(dynamic_cast<Base*>(pInt1)) << endl;
        cout << "pInt2 == p : " << p->equal(dynamic_cast<Base*>(pInt2)) << endl;
        
        return 0;
    }
    

    运行结果为:

    [root@bogon Desktop]# g++ test.cpp
    [root@bogon Desktop]# ./a.out 
    p->getI() = 100
    p->getI() = 40
    
    pInt1 == p : 1
    pInt2 == p : 1
    

    一些有用的工程建议:

    • 先继承自一个父类,然后实现多个接口
    • 父类中提供equal()成员函数
    • equal()成员函数用于判断指针是否指向当前对象
    • 多重继承相关的强制类型转换用dynamic_cast完成

    3.小结

    • 抽象类用于描述现实世界中的抽象概念
    • 抽象类只能被继承不能创建对象
    • C++中没有抽象类的概念
    • C++中通过纯虚函数实现抽象类
    • 类中只存在纯虚函数的时成为接口
    • 接口是一种特殊的抽象类
    • C++支持多重继承的编程方式
    • 多重继承容易带来问题
      1. 可能出现“同一个对象的地址不同”的情况
      2. 虚继承可以解决数据冗余的问题
      3. 虚继承的使得架构设计可能出现问题
    • 多继承中可能出现多个虚函数表指针
    • 多重继承相关的强制类型转换用dynamic_cast完成
    • 工程开发中采用“单继承多接口”的方式使用多继承
    • 父类提供成员函数用于判断指针是否指向当前对象
  • 相关阅读:
    python(对象与实例属性)
    python(类和对象相关知识)
    python(面向对象设计)
    网络基础知识
    python(hashlib)
    子网掩码划分
    cmd命令
    Linux学习第一天:Linux常用快捷键
    python猜数字小游戏
    while语句
  • 原文地址:https://www.cnblogs.com/PyLearn/p/10091824.html
Copyright © 2011-2022 走看看