zoukankan      html  css  js  c++  java
  • 焦点损失函数 Focal Loss 与 GHM

    文章来自公众号【机器学习炼丹术】

    1 focal loss的概述

    焦点损失函数 Focal Loss(2017年何凯明大佬的论文)被提出用于密集物体检测任务。

    当然,在目标检测中,可能待检测物体有1000个类别,然而你想要识别出来的物体,只是其中的某一个类别,这样其实就是一个样本非常不均衡的一个分类问题。

    而Focal Loss简单的说,就是解决样本数量极度不平衡的问题的。

    说到样本不平衡的解决方案,相比大家是知道一个混淆矩阵的f1-score的,但是这个好像不能用在训练中当成损失。而Focal loss可以在训练中,让小数量的目标类别增加权重,让分类错误的样本增加权重

    先来看一下简单的二值交叉熵的损失:

    • y’是模型给出的预测类别概率,y是真实样本。就是说,如果一个样本的真实类别是1,预测概率是0.9,那么(-log(0.9))就是这个损失。
    • 讲道理,一般我不喜欢用二值交叉熵做例子,用多分类交叉熵做例子会更舒服。

    【然后看focal loss的改进】:

    这个增加了一个((1-y')^gamma)的权重值,怎么理解呢?就是如果给出的正确类别的概率越大,那么((1-y')^gamma)就会越小,说明分类正确的样本的损失权重小,反之,分类错误的样本的损权重大


    【focal loss的进一步改进】:

    这里增加了一个(alpha),这个alpha在论文中给出的是0.25,这个就是单纯的降低正样本或者负样本的权重,来解决样本不均衡的问题

    两者结合起来,就是一个可以解决样本不平衡问题的损失focal loss。


    【总结】:

    1. (alpha)解决了样本的不平衡问题;
    2. (eta)解决了难易样本不平衡的问题。让样本更重视难样本,忽视易样本。
    3. 总之,Focal loss会的关注顺序为:样本少的、难分类的;样本多的、难分类的;样本少的,易分类的;样本多的,易分类的。

    2 GHM

    • GHM是Gradient Harmonizing Mechanism。

    这个GHM是为了解决Focal loss存在的一些问题。

    【Focal Loss的弊端1】
    让模型过多的关注特别难分类的样本是会有问题的。样本中有一些异常点、离群点(outliers)。所以模型为了拟合这些非常难拟合的离群点,就会存在过拟合的风险。

    2.1 GHM的办法

    Focal Loss是从置信度p的角度入手衰减loss的。而GHM是一定范围内置信度p的样本数量来衰减loss的。

    首先定义了一个变量g,叫做梯度模长(gradient norm)

    可以看出这个梯度模长,其实就是模型给出的置信度(p^*)与这个样本真实的标签之间的差值(距离)。g越小,说明预测越准,说明样本越容易分类。

    下图中展示了g与样本数量的关系:

    【从图中可以看到】

    • 梯度模长接近于0的样本多,也就是易分类样本是非常多的
    • 然后样本数量随着梯度模长的增加迅速减少
    • 然后当梯度模长接近1的时候,样本的数量又开始增加。

    GHM是这样想的,对于梯度模长小的易分类样本,我们忽视他们;但是focal loss过于关注难分类样本了。关键是难分类样本其实也有很多!,如果模型一直学习难分类样本,那么可能模型的精确度就会下降。所以GHM对于难分类样本也有一个衰减。

    那么,GHM对易分类样本和难分类样本都衰减,那么真正被关注的样本,就是那些不难不易的样本。而抑制的程度,可以根据样本的数量来决定。

    这里定义一个GD,梯度密度

    [GD(g)=frac{1}{l(g)}sum_{k=1}^N{delta(g_k,g)} ]

    • (GD(g))是计算在梯度g位置的梯度密度;
    • (delta(g_k,g))就是样本k的梯度(g_k)是否在([g-frac{epsilon}{2},g+frac{epsilon}{2}])这个区间内。
    • (l(g))就是([g-frac{epsilon}{2},g+frac{epsilon}{2}])这个区间的长度,也就是(epsilon)

    总之,(GD(g))就是梯度模长在([g-frac{epsilon}{2},g+frac{epsilon}{2}])内的样本总数除以(epsilon).

    然后把每一个样本的交叉熵损失除以他们对应的梯度密度就行了。

    [L_{GHM}=sum^N_{i=1}{frac{CE(p_i,p_i^*)}{GD(g_i)}} ]

    • (CE(p_i,p_i^*))表示第i个样本的交叉熵损失;
    • (GD(g_i))表示第i个样本的梯度密度;

    2.2 论文中的GHM

    论文中呢,是把梯度模长划分成了10个区域,因为置信度p是从0~1的,所以梯度密度的区域长度就是0.1,比如是0~0.1为一个区域。

    下图是论文中给出的对比图:

    【从图中可以得到】

    • 绿色的表示交叉熵损失;
    • 蓝色的是focal loss的损失,发现梯度模长小的损失衰减很有效;
    • 红色是GHM的交叉熵损失,发现梯度模长在0附近和1附近存在明显的衰减。

    当然可以想到的是,GHM看起来是需要整个样本的模型估计值,才能计算出梯度密度,才能进行更新。也就是说mini-batch看起来似乎不能用GHM。

    在GHM原文中也提到了这个问题,如果光使用mini-batch的话,那么很可能出现不均衡的情况。

    【我个人觉得的处理方法】

    1. 可以使用上一个epoch的梯度密度,来作为这一个epoch来使用;
    2. 或者一开始先使用mini-batch计算梯度密度,然后模型收敛速度下降之后,再使用第一种方式进行更新。

    3 python实现

    上面讲述的关键在于focal loss实现的功能:

    1. 分类正确的样本的损失权重小,分类错误的样本的损权重大
    2. 样本过多的类别的权重较小

    在CenterNet中预测中心点位置的时候,也是使用了Focal Loss,但是稍有改动。

    3.1 概述


    这里面和上面讲的比较类似,我们忽视脚标。

    • 假设(Y=1),那么预测的(hat{Y})越靠近1,说明预测的约正确,然后((1-hat{Y})^alpha)就会越小,从而体现分类正确的样本的损失权重小;otherwize的情况也是这样。
    • 但是这里的otherwize中多了一个((1-Y)^eta),这个是用来平衡样本不均衡问题的,在后面的代码部分会提到CenterNet的热力图。就会明白这个了。

    3.2 代码讲解

    下面通过代码来理解:

    class FocalLoss(nn.Module):
        def __init__(self):
            super().__init__()
            self.neg_loss = _neg_loss
    
        def forward(self, output, target, mask):
            output = torch.sigmoid(output)
            loss = self.neg_loss(output, target, mask)
            return loss
    

    这里面的output可以理解为是一个1通道的特征图,每一个pixel的值都是模型给出的置信度,然后通过sigmoid函数转换成0~1区间的置信度。

    而target是CenterNet的热力图,这一点可能比较难理解。打个比方,一个10*10的全都是0的特征图,然后这个特征图中只有一个pixel是1,那么这个pixel的位置就是一个目标检测物体的中心点。有几个1就说明这个图中有几个要检测的目标物体。

    然后,如果一个特征图上,全都是0,只有几个孤零零的1,未免显得过于稀疏了,直观上也非常的不平滑。所以CenterNet的热力图还需要对这些1为中心做一个高斯

    可以看作是一种平滑:

    可以看到,数字1的四周是同样的数字。这是一个以1为中心的高斯平滑。


    这里我们回到上面说到的((1-Y)^eta)

    对于数字1来说,我们计算loss自然是用第一行来计算,但是对于1附近的其他点来说,就要考虑((1-Y)^eta)了。越靠近1的点的(Y)越大,那么((1-Y)^eta)就会越小,这样从而降低1附近的权重值。其实这里我也讲不太明白,就是根据距离1的距离降低负样本的权重值,从而可以实现样本过多的类别的权重较小


    我们回到主题,对output进行sigmoid之后,与output一起放到了neg_loss中。我们来看什么是neg_loss:

    def _neg_loss(pred, gt, mask):
        pos_inds = gt.eq(1).float() * mask
        neg_inds = gt.lt(1).float() * mask
    
        neg_weights = torch.pow(1 - gt, 4)
    
        loss = 0
    
        pos_loss = torch.log(pred) * torch.pow(1 - pred, 2) * pos_inds
        neg_loss = torch.log(1 - pred) * torch.pow(pred, 2) * 
                   neg_weights * neg_inds
    
        num_pos = pos_inds.float().sum()
        pos_loss = pos_loss.sum()
        neg_loss = neg_loss.sum()
    
        if num_pos == 0:
            loss = loss - neg_loss
        else:
            loss = loss - (pos_loss + neg_loss) / num_pos
        return loss
    

    先说一下,这里面的mask是根据特定任务中加上的一个小功能,就是在该任务中,一张图片中有一部分是不需要计算loss的,所以先用过mask把那个部分过滤掉。这里直接忽视mask就好了。

    neg_weights = torch.pow(1 - gt, 4)可以得知(eta=4),从下面的代码中也不难推出,(alpha=2),剩下的内容就都一样了。

    把每一个pixel的损失都加起来,除以目标物体的数量即可。

  • 相关阅读:
    美赛 LaTeX 急救指南
    切比雪夫定理的证明
    【持续更新】一个简洁、易用的美赛 LaTeX 模板: easymcm
    一个形式较精细的 Strling 公式的证明
    数学分析的主线,高等数学的一切:连续函数与“有理”分析
    一个自己稍作修改了的美赛论文 LaTeX 模板
    有关几个特殊命题的证明
    实数系与实数定理(下)
    实数系与实数定理(上)
    Office365完整离线安装包下载及自定义安装教程
  • 原文地址:https://www.cnblogs.com/PythonLearner/p/13416128.html
Copyright © 2011-2022 走看看