- 文章原创自:微信公众号「机器学习炼丹术」
- 作者:炼丹兄
- 联系方式:微信cyx645016617
- 代码来自github
【前言】:看代码的时候,也许会不理解VIT中各种组件的含义,但是这个文章的目的是了解其实现。在之后看论文的时候,可以做到心中有数,而不是一片茫然。
VIT类
初始化
和之前的学习一样,从大模型类开始看起,然后一点一点看小模型类:
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
super().__init__()
assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_size // patch_size) ** 2
patch_dim = channels * patch_size ** 2
assert num_patches > MIN_NUM_PATCHES, f'your number of patches ({num_patches}) is way too small for attention to be effective (at least 16). Try decreasing your patch size'
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
self.patch_size = patch_size
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.patch_to_embedding = nn.Linear(patch_dim, dim)
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
self.pool = pool
self.to_latent = nn.Identity()
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
在实际的调用中,是如下调用的:
model = ViT(
dim=128,
image_size=224,
patch_size=32,
num_classes=2,
channels=3,
).to(device)
输入参数讲解:
image_size
:图片的大小;patch_size
:把图片划分成小的patch,小的patch的尺寸;num_classes
:这次分类任务的类别总数;channels
:输入图片的通道数。
VIT类中初始化的组件:
num_patches
:一个图片划分成多少个patch,因为图片224,patch32,所以划分成7x7=49个patches;patch_dim
:3x32x32,理解为一个patch中的元素个数;
......这样展示是不是非常的麻烦,还要上下来回翻看代码,所以我写成注释的形式
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
# image_size=224,patch_size=32,num_classes=2,channels=3,dim=128
super().__init__()
assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.'
# num_pathes = (224//32)**2 = 7*7=49
num_patches = (image_size // patch_size) ** 2
# patch_dim = 3*32*32
patch_dim = channels * patch_size ** 2
assert num_patches > MIN_NUM_PATCHES, f'your number of patches ({num_patches}) is way too small for attention to be effective (at least 16). Try decreasing your patch size'
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
# self.patch_size = 32
self.patch_size = patch_size
# self.pos_embedding是一个形状为(1,50,128)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
# self.patch_to_embedding是一个从3*32*32到128映射的线性层
self.patch_to_embedding = nn.Linear(patch_dim, dim)
# self.cls_token是一个随机初始化的形状为(1,1,128)这样的变量
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)
# Transformer后面会讲解
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
self.pool = pool
self.to_latent = nn.Identity()
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
forward
现在看VIT的推理过程:
def forward(self, img, mask = None):
# p=32
p = self.patch_size
x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p)
x = self.patch_to_embedding(x) # x.shape=[b,49,128]
b, n, _ = x.shape # n = 49
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
x = torch.cat((cls_tokens, x), dim=1) # x.shape=[b,50,128]
x += self.pos_embedding[:, :(n + 1)] # x.shape=[b,50,128]
x = self.dropout(x)
x = self.transformer(x, mask) # x.shape=[b,50,128],mask=None
x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]
x = self.to_latent(x)
return self.mlp_head(x)
- 这里的代码用到了
from einops import rearrange, repeat
,这个库函数,einops是一个库函数,是对张量进行操作的库函数,支持pytorch,TF等。 einops.rearrange
是把输入的img,从[b,3,224,224]的形状改成[b,3,7,32,7,32]的形状,通过矩阵的转置换成[b,7,7,32,32,3]的样子,最后合并成[b,49,32x32x3]self.patch_to_embedding
,输出的x的形状为[b,49,128];einops.repeat
是把self.cls_token从[1,1,128]复制成[b,1,128]
现在,我们知道从patch到embedding是用线性层实现的。
transformer
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout):
# dim=128,depth=12,heads=8,dim_head=64,mlp_dim=128
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Residual(PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout))),
Residual(PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)))
]))
def forward(self, x, mask = None):
for attn, ff in self.layers:
x = attn(x, mask = mask)
x = ff(x)
return x
- self.layers中包含depth组的Attention+FeedForward模块。
- 这里需要记得,输入的x的尺寸为[b,50,128]
Attention
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads # 64 x 8
self.heads = heads # 8
self.scale = dim_head ** -0.5
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x, mask = None):
b, n, _, h = *x.shape, self.heads # n=50,h=8
# self.to_qkv(x)得到的尺寸为[b,50,64x8x3],然后chunk成3份
# 也就是说,qkv是一个三元tuple,每一份都是[b,50,64x8]的大小
qkv = self.to_qkv(x).chunk(3, dim = -1)
# 把每一份从[b,50,64x8]变成[b,8,50,64]的形式
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)
# 这一步不太好理解,q和k都是[b,8,50,64]的形式,50理解为特征数量,64为特征变量
# dots.shape=[b,8,50,50]
dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale
# 不考虑mask这一块的内容
mask_value = -torch.finfo(dots.dtype).max
if mask is not None:
mask = F.pad(mask.flatten(1), (1, 0), value = True)
assert mask.shape[-1] == dots.shape[-1], 'mask has incorrect dimensions'
mask = mask[:, None, :] * mask[:, :, None]
dots.masked_fill_(~mask, mask_value)
del mask
# 对[b,8,50,50]的最后一个维度做softmax
attn = dots.softmax(dim=-1)
# 这个attn就是计算出来的自注意力值,和v做点乘,out.shape=[b,8,50,64]
out = torch.einsum('bhij,bhjd->bhid', attn, v)
# out.shape变成[b,50,8x64]
out = rearrange(out, 'b h n d -> b n (h d)')
# out.shape重新变成[b,60,128]
out = self.to_out(out)
return out
综上所属,这个attention其实就是一个自注意力模块,输入的是[b,50,128],返回的也是[b,50,128]。实现的过程因为使用了torch.einsum所以有些复杂,但是总的来说,和我之前讲过的一篇论文"non-local"模块,是完全一样的。torch.einsum和torch.mm
原理相同,只是因为torch.mm不支持高纬度的张量做矩阵乘法。
PreNorm
class PreNorm(nn.Module):
def __init__(self, dim, fn):
# dim=128,fn=Attention/FeedForward
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
先对输入的x(x.shape=[b,50,128])做一个layerNormalization层归一化,然后再放到上面的Attention模块中做自注意力。
Residual
class Residual(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(x, **kwargs) + x
一个残差模块罢了。
FeedForward
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
# dim=128,hidden_dim=128
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
就是两个线性层,这里有意思的是GELU()激活函数,这个激活函数可以直接使用torch.nn.GELU()
调用,回头有机会再好好讲一下GELU()的原理。
transformer总结
Residual(PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout))),
Residual(PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)))
- 第一个就是,先对输入做layerNormalization,然后放到attention得到attention的结果,然后结果和做layerNormalization之前的输入相加做一个残差链接;
- 第二个就是,x->LayerNormalization->FeedForward线性层->y,然后这个y和输入的x相加,做残差连接。
VIT总结
回顾一下整个流程:
- 一个图片224x224,分成了49个32x32的patch;
- 对这么多的patch做embedding,成49个128向量;
- 再拼接一个cls_tokens,变成50个128向量;
- 再加上pos_embedding,还是50个128向量;
- 这些向量输入到transformer中进行自注意力的特征提取;
- 输出的是50个128向量,然后对这个50个求军职,变成一个128向量;
- 然后线性层把128维变成2维从而完成二分类任务的transformer模型。
问题:我对NLP了解不深入,有没有人可以回答一下这个问题:cls_tokens和pos_embedding的用处是什么?