zoukankan      html  css  js  c++  java
  • ACM-ICPC 2018 南京赛区网络预赛 Magical Girl Haze 最短路

    ACM-ICPC 2018 南京赛区网络预赛 Magical Girl Haze 最短路

    题面

    There are N cities in the country, and M directional roads from uu to v(1(le) u, v(le) n)v(1≤u,v≤n). Every road has a distance (c_i). Haze is a Magical Girl that lives in City 11, she can choose no more than KK roads and make their distances become 00. Now she wants to go to City NN, please help her calculate the minimum distance.

    Input
    The first line has one integer T((1 le Tle 5)), then following TT cases.

    For each test case, the first line has three integers N, MN,M and KK.

    Then the following MM lines each line has three integers, describe a road, (U_i), (V_i), (C_i). There might be multiple edges between uu and vv.

    It is guaranteed that (N le 100000, M le 200000, K le 10N≤100000,M≤200000,K≤10, 0 le C_i le 1e9≤C i≤1e9). There is at least one path between City 1 and City N.

    Output
    For each test case, print the minimum distance.

    题意:

    求1到n的最短路,路径中的k跳路可以不花费代价
    

    思路:

    考虑k很小,我们可以用dist[i][k]表示到i点,使用了k次路径免费的最短路径,二维最短路。然后魔改dijkstra。听说别人spfa被卡了。。。
    
    #include<bits/stdc++.h>
    
    using namespace std;
    typedef long long LL;
    const int MAXN = 1e5 + 10;
    const int MAXM = 2e5 + 10;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    
    int T, n, m, first[MAXN], sign, k;
    
    struct Edge {
        int to, next;
        LL w;
    } edge[MAXM * 2];
    
    void init() {
        for(int i = 1; i <= n; i ++ ) {
            first[i] = 0;
        }
        sign = 1;
    }
    
    void add_edge(int u,int v,int w) {
        edge[sign].to = v;
        edge[sign].w  = w;
        edge[sign].next = first[u];
        first[u] = sign ++;
    }
    
    struct Node {
        int to, cnt;
        LL cost;
        Node(){}
        Node(int f, int s, int c):to(f), cost(s), cnt(c) {}
        friend bool operator < (const Node &a, const Node &b) {
            return a.cost > b.cost;
        }
    };
    
    LL dis[MAXN][11];
    
    bool vis[MAXN][11];
    
    LL dijkstra(int s) {
        priority_queue<Node> heap;
        memset(vis, 0, sizeof(vis));
        memset(dis, 0x3f, sizeof(dis));
        heap.push(Node(s, 0, 0));
        while(!heap.empty()) {
            Node now = heap.top();
            heap.pop();
            if(!vis[now.to][now.cnt]) {
                vis[now.to][now.cnt] = 1;
                dis[now.to][now.cnt] = now.cost;
                for(int i = first[now.to]; i; i = edge[i].next) {
                    int to = edge[i].to;
                    LL ww = edge[i].w;
                    if(now.cnt + 1 <= k && !vis[to][now.cnt + 1]) {
                        heap.push(Node(to, now.cost, now.cnt + 1));
                    }
                    if(now.cnt <= k && !vis[to][now.cnt]) {
                        heap.push(Node(to, now.cost + ww, now.cnt));
                    }
                }
            }
        }
        LL ans = INF;
        for(int i = 0; i <= k; i++ ) {
            ans = min(ans, dis[n][i]);
        }
        return ans;
    }
    
    
    int main() {
    
        while(~scanf("%d", &T)) {
            while(T--) {
                scanf("%d %d %d", &n, &m, &k);
                init();
                for(int i = 1; i <= m; i++ ) {
                    int u, v, w;
                    scanf("%d %d %d", &u, &v, &w);
                    add_edge(u, v, w);
                }
                printf("%lld
    ", dijkstra(1));
            }
        }
    
    
        return 0;
    }
    
  • 相关阅读:
    Spring AOP应用场景你还不知道?这篇一定要看!
    解决 Failed to start LSB: Bring up/down networking 问题
    查出undefined symbol项命令
    将当前目录加入库环境变量
    Fortran代码生成so库
    Java调用Fortran生成so库报“libifport.so.5: 无法打开共享对象文件”错误解决方法
    HBase过滤器(转载)
    HBase设计规范(转载)
    spark(2.1.0) 操作hbase(1.0.2)
    zookeeper搭建
  • 原文地址:https://www.cnblogs.com/Q1143316492/p/9571546.html
Copyright © 2011-2022 走看看