T3 AGC103F
有n个点的树,边权为1,给出你每个点到其他点的距离和(D_i),构建出这个树.
(n le 1e5 , D_i le 1e12)
构造,到其他点距离最大的一定是叶子,若叶子是x,那么fa就是 x + siz[son] - (n - siz[son]) = x - n + 2 * siz[son]
从下往上构建,即可,最后再检查一遍。
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<cmath>
#include<map>
using namespace std;
typedef long long LL;
const int N = 1e5+10;
inline LL read()
{
register LL x = 0 , f = 0; register char c = getchar();
while(c < '0' || c > '9') f |= c == '-' , c = getchar();
while(c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0' , c = getchar();
return f ? -x : x;
}
int n;
LL d[N];
int eu[N] , ev[N] , siz[N];
vector<int> G[N];
map<LL , int> mp;
struct node
{
LL d;
int id;
}p[N];
inline bool cmp(const node &A , const node &B) { return A.d > B.d; }
void dfs1(int x , int dep , int rot)
{
siz[x] = 1; d[rot] += dep;
for(int i = 0 ; i < G[x].size() ; ++i) dfs1(G[x][i] , dep + 1 , rot) , siz[x] += siz[G[x][i]];
return ;
}
void dfs2(int x)
{
for(int i = 0 ; i < G[x].size() ; ++i)
{
d[G[x][i]] = d[x] + n - 2 * siz[G[x][i]];
dfs2(G[x][i]);
}
return ;
}
int main()
{
n = read();
for(int i = 1 ; i <= n ; ++i) p[i].d = read() , p[i].id = i , mp[p[i].d] = i;
LL sum = 0;
for(int i = 1 ; i <= n ; ++i) sum += p[i].d;
if(sum & 1) { puts("-1"); return 0; }
sort(p + 1 , p + 1 + n , cmp);
for(int i = 1 ; i <= n ; ++i) siz[i] = 1;
for(int i = 1 ; i < n ; ++i)
{
LL fa_d = p[i].d - n + 2 * siz[p[i].id];
if(!mp.count(fa_d)) { puts("-1"); return 0; }
ev[i] = p[i].id; eu[i] = mp[fa_d]; siz[eu[i]] += siz[ev[i]];
}
for(int i = 1 ; i < n ; ++i) G[eu[i]].push_back(ev[i]);
dfs1(p[n].id , 0 , p[n].id); dfs2(p[n].id);
for(int i = 1 ; i <= n ; ++i) if(d[p[i].id] != p[i].d) { puts("-1"); return 0; }
for(int i = 1 ; i < n ; ++i) cout << eu[i] << ' ' << ev[i] << '
';
return 0;
}