zoukankan      html  css  js  c++  java
  • Vika and Segments

    Vika has an infinite sheet of squared paper. Initially all squares are white. She introduced a two-dimensional coordinate system on this sheet and drew n black horizontal and vertical segments parallel to the coordinate axes. All segments have width equal to 1 square, that means every segment occupy some set of neighbouring squares situated in one row or one column.

    Your task is to calculate the number of painted cells. If a cell was painted more than once, it should be calculated exactly once.

    Input

    The first line of the input contains a single integer n (1 ≤ n ≤ 100 000) — the number of segments drawn by Vika.

    Each of the next n lines contains four integers x1, y1, x2 and y2 ( - 109 ≤ x1, y1, x2, y2 ≤ 109) — the coordinates of the endpoints of the segments drawn by Vika. It is guaranteed that all the segments are parallel to coordinate axes. Segments may touch, overlap and even completely coincide.

    Output

    Print the number of cells painted by Vika. If a cell was painted more than once, it should be calculated exactly once in the answer.

    Sample test(s)
    Input
    3
    0 1 2 1
    1 4 1 2
    0 3 2 3
    Output
    8
    Input
    4
    -2 -1 2 -1
    2 1 -2 1
    -1 -2 -1 2
    1 2 1 -2
    Output
    16
    Note

    In the first sample Vika will paint squares (0, 1), (1, 1), (2, 1), (1, 2), (1, 3), (1, 4), (0, 3) and (2, 3).

    简单题意

    给你很多条与坐标轴平行的线段,求线段覆盖的点数是多少

    胡说题解

    首先先分成两类,平行x轴的和平行y轴的线段,然后排序,再合并线段,使得相同类型的线段没有交集,然后计算ans(这个时候还没完,因为横纵相交的点没有去掉

    然后我们要计算横纵相交的点数

    然后这是比较经典的双关键字的限制的求和了,可以用cdq分治,或者排序按序加入然后维护区间和之类的

    脑残错误

    一开始RE几发,最后查出原因是因为sort的cmp没打好,不能判断出来相等(a<b是true,b<a也是true)然后就鬼畜了,所以打cmp的时候正确的姿势是每个关键字都要比较(AC代码里面并没有完全改过来,懒。。。

      1 #include<cstdio>
      2 #include<algorithm>
      3 #include<cmath>
      4 using namespace std;
      5 
      6 struct point{
      7     bool q;
      8     int h,d,l,r;
      9 };
     10 
     11 const int maxn=100100;
     12 
     13 int n,s[maxn*2],x[maxn*2],tot;
     14 point a[maxn*3];
     15 long long ans;
     16 
     17 bool compare(point a,point b){
     18     if(a.q^b.q)return a.q;
     19     if(a.q){
     20         if(a.l!=b.l)return a.l<b.l;
     21         if(a.d!=b.d)return a.d<b.d;
     22         return a.h<b.h;
     23     }
     24     else{
     25         if(a.d!=b.d)return a.d<b.d;
     26         if(a.l!=b.l)return a.l<b.l;
     27         return a.r<b.r;
     28     }
     29 }
     30 
     31 bool cmp2(point a,point b){
     32     if(a.h!=b.h)return a.h>b.h;
     33     if(a.q^b.q)return a.q>b.q;
     34     return a.l<b.l;
     35 }
     36 
     37 int find(int i){
     38     int l=1,r=tot,mid;
     39     while(l!=r){
     40         mid=(l+r)/2;
     41         if(x[mid]>=i)r=mid;
     42         else l=mid+1;
     43     }
     44     return l;
     45 }
     46 
     47 int lowbit(int x){
     48     return x&-x;
     49 }
     50 
     51 int sum(int x){
     52     int ss=0;
     53     while(x>0){
     54         ss+=s[x];
     55         x-=lowbit(x);
     56     }
     57     return ss;
     58 }
     59 
     60 void add(int x,int y){
     61     while(x<=tot){
     62         s[x]+=y;
     63         x+=lowbit(x);
     64     }
     65 }
     66 
     67 int main(){
     68     scanf("%d",&n);
     69     int i;
     70     for(i=1;i<=n;i++){
     71         scanf("%d%d%d%d",&a[i].l,&a[i].h,&a[i].r,&a[i].d);
     72         if(a[i].r<a[i].l)swap(a[i].l,a[i].r);
     73         if(a[i].h<a[i].d)swap(a[i].h,a[i].d);
     74         if(a[i].l==a[i].r)a[i].q=true;
     75     }
     76     sort(a+1,a+1+n,compare);
     77     for(i=1;i<n;i++)
     78     if(a[i].q==a[i+1].q){
     79         if(a[i].q){
     80             if(a[i].l==a[i+1].l)
     81             if(a[i+1].d<=a[i].h+1){
     82                 a[i+1].d=a[i].d;
     83                 a[i+1].h=fmax(a[i+1].h,a[i].h);
     84                 a[i].l=0;a[i].r=-1;
     85             }
     86         }
     87         else{
     88             if(a[i].h==a[i+1].h)
     89             if(a[i+1].l<=a[i].r+1){
     90                 a[i+1].l=a[i].l;
     91                 a[i+1].r=fmax(a[i+1].r,a[i].r);
     92                 a[i].l=0;a[i].r=-1;
     93             }
     94         }
     95     }
     96     for(i=1;i<=n;i++)ans+=(a[i].r-a[i].l+1)*(a[i].h-a[i].d+1);
     97     for(i=1;i<=n;i++)
     98     if(a[i].l<=a[i].r)x[++tot]=a[i].l,x[++tot]=a[i].r;
     99     sort(x+1,x+1+tot);
    100     int tmp=n;
    101     for(i=1;i<=tmp;i++)if(a[i].q && a[i].l<=a[i].r){
    102         ++n;
    103         a[n].q=true;
    104         a[n].h=a[i].h;
    105         a[n].d=a[i].l;
    106         a[n].l=1;a[n].r=1;
    107         ++n;
    108         a[n].q=true;
    109         a[n].h=a[i].d-1;
    110         a[n].d=a[i].l;
    111         a[n].l=-1;
    112         a[i].l=0;a[i].r=-1;
    113     }
    114     sort(a+1,a+1+n,cmp2);
    115     for(i=1;i<=n;i++){
    116         if(a[i].l<=a[i].r){
    117             if(a[i].q)add(find(a[i].d),a[i].l);
    118             else ans-=sum(find(a[i].r))-sum(find(a[i].l)-1);
    119         }
    120     }
    121     printf("%I64d
    ",ans);
    122     return 0;
    123 }
    AC代码
  • 相关阅读:
    python模块之PIL模块(生成随机验证码图片)
    3.5 黑盒测试方法-逻辑推断法
    3.4 黑盒测试用例的设计方法之-等价类划分与边界值分析
    三、测试用例
    LoadRunner性能测试工具下载
    二、软件测试的流程
    优秀的软件测试人员应该具备的素质
    一、测试基础
    实现人脸识别性别之路------前端突破点
    day2
  • 原文地址:https://www.cnblogs.com/Randolph87/p/5199350.html
Copyright © 2011-2022 走看看